logiciel, BROUILLON

unbound sur Raspberry Pi : un serveur DNS sur votre réseau local

Pré-requis

Disposer :

• et d'une connexion à Internet active pour les tests.

Première étape

Placez-vous sur le Raspberry Pi (connectez-vous au Raspberry Pi via ssh). Installez les paquets unbound et dnsutils en ligne de commande :

...@...:~ \$ sudo apt-get install -y unbound dnsutils ...@...:~ \$ sudo systemctl enable unbound

Le paquet **dnsutils** comporte l'utilitaire **dig** avec lequel nous ferons les tests.

Autres étapes

Configuration

Pour ne pas toucher au fichier /etc/unbound/unbound.conf, les fichiers de configuration sont placés dans le répertoire **/etc/unbound/unbound.d**.

Créez avec les droits d'administration le fichier /etc/unbound/unbound.d/local.conf :

/etc/unbound/unbound.d/local.conf

```
server:
# Adresse du serveur DNS Unbound : toutes les interfaces
interface: 0.0.0.0
# autoriser le réseau local
access-control: 192.168.0.0/16 allow
local-zone: "monlan." static
```

local-data: "box.monlan. IN A 192.168.0.254"
local-data-ptr: "192.168.0.254 box.monlan"

- interface: 0.0.0.0 : Accessible sur toutes les interfaces
- access-control: 192.168.0.0/16 allow : Accessible depuis le réseau local
- local-zone: / local-data: : Domaines et sous-domaines
 Nous avons créé sur le réseau local un nouveau pseudo-domaine monlan, et la box est accessible par box.monlan.
- 2. Pour vérifier, utilisons l'utilitaire **dig** :

...@...:~ \$ dig freebox.monlan

retourne l'adresse IP 192.168.0.254

3. Pour vérifier l'adresse IP :

...@...:~ \$ dig -x 192.168.0.254

retourne **freebox.monlan**

4. Un autre exemple de config : https://blog.zenithar.org/post/2015/08/11/installer-resolveur-dns-raspberry-pi/

Création d'un pseudo-domaine statique

Pour créer le domaine mondomaine, ajouter la ligne :

```
local-zone: "mondomaine." static
```

et les lignes précisant les machines correspondantes :

```
local-data: "box.mondomaine. IN A 192.168.0.254"
local-data-ptr: "192.168.0.254 box.mondomaine"
local-data: "machinel.mondomaine. IN A 192.168.0.1"
local-data-ptr: "192.168.0.1 machinel.mondomaine"
local-data: "machine2.mondomaine. IN A 192.168.0.2"
local-data-ptr: "192.168.0.2 machine2.mondomaine"
etc.
```

Création d'un pseudo-domaine dynamique

lci, nous créons un domaine **dyndom** et tous ses sous-domaines ***.dyndom** : **site1.dyndom**, **site2.dyndom**, etc.

Ajoutez les lignes :

```
local-zone: "dyndom." redirect
```

```
local-data: "dyndom. A 192.168.0.1"
local-data-ptr: "192.168.0.1 dyndom."
```

Dans cet exemple, le domaine **dyndom** et tous ses sous-domaines renvoient sur le serveur d'adresse IP **192.168.0.1**.

	local-zone:	pe> ne zone locale. ermine la réponse à donner s'il n'y a l-data correspondant. Les types			
i		static redirect	S'il y a correspondance avec des données locales, une réponse est donnée. réponse à partir des local-data pour la zone. Cela répond à des requêtes pour la zone, et tous les sous- domaines de la zone ayant des local-data pour la zone.		
	Par défaut, les zones sont de classe IN local-data: " <resource record="" string="">" Fournit une correspondance exacte sauf si la zone est configurée en redirect. local-data-ptr: "IPaddr name" Correspondance inverse IP → nom</resource>				

Utilisation du serveur DNS depuis une machine du réseau

Placez-vous sur la machine à configurer. Nous supposons que l'adresse IP de notre Raspberry Pi est **192.168.0.31**.

Premmier cas : sous Linux

Cliquez en haut sur l'icône du réseau :

1

Le menu s'ouvre :

Choisissez Modification des connexions :

💊 🖨 🗊 Connexions ré	seau	
Nom • Ethernet Connexion filaire 1	Dernière utilisation 🔺 il y a 4 minutes	Ajouter Modifier Supprimer 2
		Fermer

Sélectionnez la connexion à régler Cliquez sur le bouton Modifier

😣 🕒 🗉 Modification de Connexion filaire 1								
Nom de la connexion : Connexion filaire 1								
Général Ethernet Sécurité 802.1x DCB Paramètres IPv4 Paramètres IPv6								
Méthode : Adresses automatiques uniquement (DHCP)								
Adresses 2								
Adresse	Masque de réseau	Passerelle	Ajouter					
			Supprimer					
Serveurs DNS : 3 192.168.0.31								
Domaines de recherche :								
ID de client DHCP :								
Requiert un adressage IPv4 pour que cette connexion fonctionne								
		4	Routes					
		Annuler	Enregistrer					

Onglet Paramètres IPv4

Méthode : Adresses automatiques uniquement (DHCP)

Serveurs DNS : **192.168.0.31** (l'adresse de notre Raspberry Pi)

et bouton Enregistrer

2025/04/07 19:42

5/8

Redémarrez votre réseau :

Cliquez en haut sur l'icône du réseau :

Sous Windows

Si vous êtes sous Windows, allez dans **Panneau de configuration / Configuration Réseau / Réseaux TCP/IP** et paramétrez les résolveurs DNS primaire et secondaire.

Test du serveur DNS depuis une machine du réseau

Placez-vous sur la machine à configurer.

Installez le paquet **adnsutils**, ou en ligne de commande :

• sudo apt-get install -y dnsutils

Nous supposons que l'adresse IP de notre Raspberry Pi est **192.168.0.31**.

Pour tester la résolution de nom, lancez :

• dig machinel.mondomaine

qui retourne l'adresse IP 192.168.0.1 et montre que le serveur DNS utilisé est bien 192.168.0.31

Pour tester la résolution d'IP, lancez :

• dig -x 192.168.0.1

qui retourne le nom **machine1.mondomaine** et montre que le serveur DNS utilisé est bien **192.168.0.31**

Test complet avec namebench

Installez le(s) paquet(s) **Samebench**, ou en ligne de commande :

• sudo apt-get install -y namebench

Lancez-le :

namebench

Renseignez les DNS à tester et voyez le résultat.

Conclusion

Problèmes connus

Voir aussi

- (en) Créer un serveur DNS, HHTP, FTP sur un Raspberry Pi
- (fr) Créer un serveur DNS, HHTP, FTP sur un Raspberry Pi

Contributeurs principaux : Jamaique.

Basé sur « Titre original de l'article » par [Auteur Original].

From: https://nfrappe.fr/doc-0/ - **Documentation du Dr Nicolas Frappé**

Permanent link: https://nfrappe.fr/doc-0/doku.php?id=tutoriel:internet:serveur:rpi:unbound

Last update: 2022/08/13 22:15

×