2026/02/03 14:24 1/49 Page de man de grsync (22 Jun 2014)

Trusty, BROUILLON

Page de man de grsync (22 Jun 2014)

Traduction : jamaique

Nom

Synopsis

Local: rsync [OPTION...] SRC... [DEST]

Access via remote shell:
Pull: rsync [OPTION...] [USER@]JHOST:SRC... [DEST]
Push: rsync [OPTION...] SRC... [USER@]HOST:DEST

Access via rsync daemon:
Pull: rsync [OPTION...
rsync [OPTION...

Push: rsync [OPTION...
rsync [OPTION...

[USER@]HOST: :SRC. .. [DEST]
rsync://[USER@Q]JHOST[:PORT]/SRC... [DEST]
SRC... [USER@]HOST::DEST

]
]
]
] SRC... rsync://[USER@]HOST[:PORT]/DEST

Utilisé avec un seul argument SRC sans DEST, ne fait que lister les fichiers source sans les copier.

Description
Général
Installation

Utilisation

rsync s'utilise comme rcp. Vous devez spécifier une source et une destination, I'une des deux
pouvant étre distante.

Voici quelques exemples :
rsync -t *.c foo:src/

Cela transfere tous les fichiers qui correspondent au motif *.c du répertoire courant vers le répertoire

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/


https://nfrappe.fr/doc-0/doku.php?id=tag:trusty&do=showtag&tag=Trusty
https://nfrappe.fr/doc-0/doku.php?id=tag:brouillon&do=showtag&tag=BROUILLON

Last update: 2022/08/13

22:14 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

src sur la machine foo. Si I'un des fichiers existe déja sur le systeme distant, rsync met a jour le fichier
distant en utilisant le protocole remote-update,n'‘envoyant que les différences entre les données.

L'expansion de jokers (*.c) sur la ligne de commande en une liste de fichiers est assurée par le shell
avant d'exécuter rsync et non par rsync lui-méme.

rsync -avz foo:src/bar /data/tmp

This would recursively transfer all files from the directory src/bar on the machine foo into the
/data/tmp/bar directory on the local machine. The files are transferred in “archive” mode, which
ensures that symbolic links, devices, attributes, permissions, ownerships, etc. are preserved in the
transfer. Additionally, compression will be used to reduce the size of data portions of the transfer.

rsync -avz foo:src/bar/ /data/tmp
A trailing slash on the source changes this behavior to avoid creating an additional directory level at
the destination. You can think of a trailing / on a source as meaning “copy the contents of this
directory” as opposed to “copy the directory by name”, but in both cases the attributes of the
containing directory are transferred to the containing directory on the destination. In other words,

each of the following commands copies the files in the same way, including their setting of the
attributes of /dest/foo:

rsync -av /src/foo /dest
rsync -av /src/foo/ /dest/foo

Note also that host and module references don't require a trailing slash to copy the contents of the
default directory. For example, both of these copy the remote directory's contents into “/dest”:

rsync -av host: /dest
rsync -av host::module /dest

You can also use rsync in local-only mode, where both the source and destination don't have a ":' in
the name. In this case it behaves like an improved copy command.

Finally, you can list all the (listable) modules available from a particular rsync daemon by leaving off
the module name:

rsync somehost.mydomain.com::

See the following section for more details.

Utilisation avancée

Connexion a un démon rsync

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 3/49 Page de man de grsync (22 Jun 2014)

Utiliser les caractéristiques de rsync-daemon via une
connexion shell distante

Démarrer un démon rsync pour accepter les connexions
Ordre de tri du transfert
Exemples

Résumeé des options

Here is a short summary of the options available in rsync. Please refer to the detailed description
below for a complete description.

-v, -verbose
augmenter la verbosité
-info=FLAGS
fine-grained informational verbosity
-debug=FLAGS
fine-grained debug verbosity
-msgs2stderr
special output handling for debugging
-q, -quiet
suppress non-error messages
-no-motd
suppress daemon-mode MOTD (see caveat)
-C, -checksum
skip based on checksum, not mod-time & size

-a, -archive
archive mode; equals -rlptgoD (no -H,-A,-X)
--no-0PTION turn off an implied OPTION (e.g. --no-D)
-r, --recursive recurse into directories
-R, --relative use relative path names
--no-implied-dirs don't send implied dirs with --relative
-b, --backup make backups (see --suffix & --backup-dir)
- -backup-dir=DIR make backups into hierarchy based in DIR
- -suffix=SUFFIX backup suffix (default ~ w/o --backup-dir)
-u, --update skip files that are newer on the receiver
--inplace update destination files in-place
- -append append data onto shorter files
- -append-verify --append w/old data in file checksum
-d, --dirs transfer directories without recursing
-1, --links copy symlinks as symlinks

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update: 2022/08/13
22:14

logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

-L, --copy-links
--copy-unsafe-1links
--safe-1links
--munge-links

-k, --copy-dirlinks

-K, --keep-dirlinks

-H, --hard-links

-p, --perms

-E, --executability
- -chmod=CHMOD

-A, --acls

-X, --xattrs

-0, --owner

-g, --group
--devices
--specials

-D

-t, --times

-0, --omit-dir-times

-J, --omit-link-times
--super
- -fake-super

-S, --sparse
--preallocate

-n, --dry-run

-W, --whole-file

-X, --one-file-system

-B, --block-size=SIZE

-e, --rsh=COMMAND
- -rsync-path=PROGRAM
--existing
--ignore-existing
--remove-source-files
- -del
--delete
--delete-before
--delete-during
--delete-delay
--delete-after
- -delete-excluded
--ignore-missing-args
--delete-missing-args
--ignore-errors
--force
--max-delete=NUM
--max-size=SIZE
--min-size=SIZE
--partial
--partial-dir=DIR
--delay-updates

transform symlink into referent file/dir
only "unsafe" symlinks are transformed
ignore symlinks that point outside the tree
munge symlinks to make them safer
transform symlink to dir into referent dir
treat symlinked dir on receiver as dir
preserve hard links

preserve permissions

preserve executability

affect file and/or directory permissions
preserve ACLs (implies -p)

preserve extended attributes

preserve owner (super-user only)

preserve group

preserve device files (super-user only)
preserve special files

same as --devices --specials

preserve modification times

omit directories from --times

omit symlinks from --times

receiver attempts super-user activities
store/recover privileged attrs using xattrs
handle sparse files efficiently

allocate dest files before writing

perform a trial run with no changes made
copy files whole (w/o delta-xfer algorithm)
don't cross filesystem boundaries

force a fixed checksum block-size

specify the remote shell to use

specify the rsync to run on remote machine
skip creating new files on receiver

skip updating files that exist on receiver
sender removes synchronized files (non-dir)
an alias for --delete-during

delete extraneous files from dest dirs
receiver deletes before xfer, not during
receiver deletes during the transfer

find deletions during, delete after
receiver deletes after transfer, not during
also delete excluded files from dest dirs
ignore missing source args without error
delete missing source args from destination
delete even if there are I/0 errors

force deletion of dirs even if not empty
don't delete more than NUM files

don't transfer any file larger than SIZE
don't transfer any file smaller than SIZE
keep partially transferred files

put a partially transferred file into DIR
put all updated files into place at end

https://nfrappe.fr/doc-0/

Printed on 2026/02/03 14:24



2026/02/03 14:24 5/49 Page de man de grsync (22 Jun 2014)

-m, --prune-empty-dirs prune empty directory chains from file-list
--numeric-ids don't map uid/gid values by user/group name
- -usermap=STRING custom username mapping
- -groupmap=STRING custom groupname mapping
- -chown=USER : GROUP simple username/groupname mapping
- -timeout=SECONDS set I/0 timeout in seconds
--contimeout=SECONDS set daemon connection timeout in seconds
-I, --ignore-times don't skip files that match size and time
--size-only skip files that match in size
- -modify-window=NUM compare mod-times with reduced accuracy
-T, --temp-dir=DIR create temporary files in directory DIR
-y, --fuzzy find similar file for basis if no dest file
--compare-dest=DIR also compare received files relative to DIR
--copy-dest=DIR ... and include copies of unchanged files
--link-dest=DIR hardlink to files in DIR when unchanged
-z, --compress compress file data during the transfer
--compress-level=NUM explicitly set compression level
--skip-compress=LIST skip compressing files with suffix in LIST
-C, --cvs-exclude auto-ignore files in the same way CVS does
-f, --filter=RULE add a file-filtering RULE
-F same as --filter='dir-merge /.rsync-filter'
repeated: --filter='- .rsync-filter'
- -exclude=PATTERN exclude files matching PATTERN
--exclude-from=FILE read exclude patterns from FILE
--include=PATTERN don't exclude files matching PATTERN
--include-from=FILE read include patterns from FILE
--files-from=FILE read list of source-file names from FILE
-0, --from0@ all *from/filter files are delimited by 0s
-s, --protect-args no space-splitting; wildcard chars only
- -address=ADDRESS bind address for outgoing socket to daemon
- -port=PORT specify double-colon alternate port number
--sockopts=0PTIONS specify custom TCP options
--blocking-io use blocking I/0 for the remote shell
--outbuf=N|L|B set out buffering to None, Line, or Block
--stats give some file-transfer stats
-8, --8-bit-output leave high-bit chars unescaped in output
-h, --human-readable output numbers in a human-readable format
--progress show progress during transfer
-P same as --partial --progress
-i, --itemize-changes output a change-summary for all updates
-M, --remote-option=0PTION send OPTION to the remote side only
--out-format=FORMAT output updates using the specified FORMAT
--log-file=FILE log what we're doing to the specified FILE
--log-file-format=FMT  log updates using the specified FMT
--password-file=FILE read daemon-access password from FILE
--list-only list the files instead of copying them
- -bwlimit=RATE limit socket I/0 bandwidth
--write-batch=FILE write a batched update to FILE
--only-write-batch=FILE like --write-batch but w/o updating dest
--read-batch=FILE read a batched update from FILE
--protocol=NUM force an older protocol version to be used

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update: 2022/08/13 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

22:14
- -iconv=CONVERT SPEC request charset conversion of filenames
- -checksum-seed=NUM set block/file checksum seed (advanced)
-4, --ipva prefer IPv4
-6, --ipv6 prefer IPv6
--version print version number
(-h) --help show this help (see below for -h comment)

Rsync can also be run as a daemon, in which case the following options are accepted:

- -daemon run as an rsync daemon
- -address=ADDRESS bind to the specified address
- -bwlimit=RATE limit socket I/0 bandwidth
--config=FILE specify alternate rsyncd.conf file

-M, --dparam=0VERRIDE override global daemon config parameter
--no-detach do not detach from the parent
- -port=PORT listen on alternate port number
--log-file=FILE override the "log file" setting
--log-file-format=FMT override the "log format" setting
--sockopts=0PTIONS specify custom TCP options

-v, --verbose increase verbosity

-4, --ipv4 prefer IPv4

-6, --ipv6 prefer IPv6

-h, --help show this help (if used after --daemon)

Options

Rsync accepts both long (double-dash + word) and short (single-dash +
letter) options. The full list of the available options are described below.
If an option can be specified in more than one way, the choices are comma-
separated. Some options only have a long variant, not a short. If the option
takes a parameter, the parameter is only listed after the long variant, even
though it must also be specified for the short. When specifying a parameter,
you can either use the form --option=param or replace the '=' with
whitespace. The parameter may need to be quoted in some manner for it to
survive the shell's command-line parsing. Keep in mind that a leading tilde
(~) in a filename is substituted by your shell, so --option=~/foo will not
change the tilde into your home directory (remove the '=' for that).

--help

Print a short help page describing the options available in rsync and
exit. For backward-compatibility with older versions of rsync, the help will
also be output if you use the -h option without any other args.

--version
print the rsync version number and exit.

-v, --verbose
This option increases the amount of information you are given during the

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 7/49 Page de man de grsync (22 Jun 2014)

transfer. By default, rsync works silently. A single -v will give you
information about what files are being transferred and a brief summary at
the end. Two -v options will give you information on what files are being
skipped and slightly more information at the end. More than two -v options
should only be used if you are debugging rsync.

In a modern rsync, the -v option is equivalent to the setting of groups
of --info and --debug options. You can choose to use these newer options in
addition to, or in place of using --verbose, as any fine-grained settings
override the implied settings of -v. Both --info and --debug have a way to
ask for help that tells you exactly what flags are set for each increase in
verbosity.

However, do keep in mind that a daemon's "max verbosity" setting will
limit how high of a level the various individual flags can be set on the
daemon side. For instance, if the max is 2, then any info and/or debug flag
that is set to a higher value than what would be set by -vv will be
downgraded to the -vv level in the daemon's logging.

- -info=FLAGS

This option lets you have fine-grained control over the information
output you want to see. An individual flag name may be followed by a level
number, with 0 meaning to silence that output, 1 being the default output
level, and higher numbers increasing the output of that flag (for those that
support higher levels). Use --info=help to see all the available flag names,
what they output, and what flag names are added for each increase in the
verbose level. Some examples:

rsync -a --info=progress2 src/ dest/
rsync -avv --info=stats2,miscl,flist0® src/ dest/

Note that --info=name's output is affected by the --out-format and --
itemize-changes (-i) options. See those options for more information on what
is output and when.

This option was added to 3.1.0, so an older rsync on the server side
might reject your attempts at fine-grained control (if one or more flags
needed to be send to the server and the server was too old to understand
them). See also the "max verbosity" caveat above when dealing with a daemon.

- -debug=FLAGS

This option lets you have fine-grained control over the debug output you
want to see. An individual flag name may be followed by a level number, with
0 meaning to silence that output, 1 being the default output level, and
higher numbers increasing the output of that flag (for those that support
higher levels). Use --debug=help to see all the available flag names, what
they output, and what flag names are added for each increase in the verbose
level. Some examples:

rsync -avvv --debug=none src/ dest/
rsync -avA --del --debug=del2,acl src/ dest/

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update: 2022/08/13

22:14 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

Note that some debug messages will only be output when --msgs2stderr is
specified, especially those pertaining to I/0 and buffer debugging.

This option was added to 3.1.0, so an older rsync on the server side
might reject your attempts at fine-grained control (if one or more flags
needed to be send to the server and the server was too old to understand
them). See also the "max verbosity" caveat above when dealing with a daemon.

--msgs2stderr

This option changes rsync to send all its output directly to stderr
rather than to send messages to the client side via the protocol (which
normally outputs info messages via stdout). This is mainly intended for
debugging in order to avoid changing the data sent via the protocol, since
the extra protocol data can change what is being tested. Keep in mind that a
daemon connection does not have a stderr channel to send messages back to
the client side, so if you are doing any daemon-transfer debugging using
this option, you should start up a daemon using --no-detach so that you can
see the stderr output on the daemon side.

This option has the side-effect of making stderr output get line-
buffered so that the merging of the output of 3 programs happens in a more
readable manner.

-q, --quiet

This option decreases the amount of information you are given during the
transfer, notably suppressing information messages from the remote server.
This option is useful when invoking rsync from cron.

--no-motd

This option affects the information that is output by the client at the
start of a daemon transfer. This suppresses the message-of-the-day (MOTD)
text, but it also affects the list of modules that the daemon sends in
response to the "rsync host::" request (due to a limitation in the rsync
protocol), so omit this option if you want to request the list of modules
from the daemon.

-I, --ignore-times

Normally rsync will skip any files that are already the same size and
have the same modification timestamp. This option turns off this "quick
check" behavior, causing all files to be updated.

--size-only

This modifies rsync's "quick check" algorithm for finding files that
need to be transferred, changing it from the default of transferring files
with either a changed size or a changed last-modified time to just looking
for files that have changed in size. This is useful when starting to use
rsync after using another mirroring system which may not preserve timestamps
exactly.

--modify-window

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 9/49 Page de man de grsync (22 Jun 2014)

When comparing two timestamps, rsync treats the timestamps as being
equal if they differ by no more than the modify-window value. This is
normally 0 (for an exact match), but you may find it useful to set this to a
larger value in some situations. In particular, when transferring to or from
an MS Windows FAT filesystem (which represents times with a 2-second
resolution), --modify-window=1 is useful (allowing times to differ by up to
1 second).

-c, --checksum

This changes the way rsync checks if the files have been changed and are
in need of a transfer. Without this option, rsync uses a "quick check" that
(by default) checks if each file's size and time of last modification match
between the sender and receiver. This option changes this to compare a 128-
bit checksum for each file that has a matching size. Generating the
checksums means that both sides will expend a lot of disk I/0 reading all
the data in the files in the transfer (and this is prior to any reading that
will be done to transfer changed files), so this can slow things down
significantly.

The sending side generates its checksums while it is doing the file-
system scan that builds the list of the available files. The receiver
generates its checksums when it is scanning for changed files, and will
checksum any file that has the same size as the corresponding sender's file:
files with either a changed size or a changed checksum are selected for
transfer.

Note that rsync always verifies that each transferred file was correctly
reconstructed on the receiving side by checking a whole-file checksum that
is generated as the file is transferred, but that automatic after-the-
transfer verification has nothing to do with this option's before-the-
transfer "Does this file need to be updated?" check.

For protocol 30 and beyond (first supported in 3.0.0), the checksum used
is MD5. For older protocols, the checksum used is MD4.

-a, --archive

This is equivalent to -rlptgoD. It is a quick way of saying you want
recursion and want to preserve almost everything (with -H being a notable
omission). The only exception to the above equivalence is when --files-from
is specified, in which case -r is not implied.

Note that -a does not preserve hardlinks, because finding multiply-
linked files is expensive. You must separately specify -H.

--no-0PTION

You may turn off one or more implied options by prefixing the option
name with "no-". Not all options may be prefixed with a "no-": only options
that are implied by other options (e.g. --no-D, --no-perms) or have
different defaults in various circumstances (e.g. --no-whole-file, --no-
blocking-io, --no-dirs). You may specify either the short or the long option
name after the "no-" prefix (e.g. --no-R is the same as --no-relative).

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update: 2022/08/13

22:14 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

For example: if you want to use -a (--archive) but don't want -o (--
owner), instead of converting -a into -rlptgD, you could specify -a --no-o
(or -a --no-owner).

The order of the options is important: if you specify --no-r -a, the -r
option would end up being turned on, the opposite of -a --no-r. Note also
that the side-effects of the --files-from option are NOT positional, as it
affects the default state of several options and slightly changes the
meaning of -a (see the --files-from option for more details).

-r, --recursive
This tells rsync to copy directories recursively. See also --dirs (-d).

Beginning with rsync 3.0.0, the recursive algorithm used is now an
incremental scan that uses much less memory than before and begins the
transfer after the scanning of the first few directories have been
completed. This incremental scan only affects our recursion algorithm, and
does not change a non-recursive transfer. It is also only possible when both
ends of the transfer are at least version 3.0.0.

Some options require rsync to know the full file list, so these options
disable the incremental recursion mode. These include: --delete-before, --
delete-after, --prune-empty-dirs, and --delay-updates. Because of this, the
default delete mode when you specify --delete is now --delete-during when
both ends of the connection are at least 3.0.0 (use --del or --delete-during
to request this improved deletion mode explicitly). See also the --delete-
delay option that is a better choice than using --delete-after.

Incremental recursion can be disabled using the --no-inc-recursive
option or its shorter --no-i-r alias.

-R, --relative

Use relative paths. This means that the full path names specified on the
command line are sent to the server rather than just the last parts of the
filenames. This is particularly useful when you want to send several
different directories at the same time. For example, if you used this
command:

rsync -av /foo/bar/baz.c remote:/tmp/

this would create a file named baz.c in /tmp/ on the remote machine.
If instead you used

rsync -avR /foo/bar/baz.c remote:/tmp/

then a file named /tmp/foo/bar/baz.c would be created on the remote
machine, preserving its full path. These extra path elements are called
"implied directories" (i.e. the "foo" and the "foo/bar" directories in the
above example).

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 11/49 Page de man de grsync (22 Jun 2014)

Beginning with rsync 3.0.0, rsync always sends these implied directories
as real directories in the file list, even if a path element is really a
symlink on the sending side. This prevents some really unexpected behaviors
when copying the full path of a file that you didn't realize had a symlink
in its path. If you want to duplicate a server-side symlink, include both
the symlink via its path, and referent directory via its real path. If
you're dealing with an older rsync on the sending side, you may need to use
the --no-implied-dirs option.

It is also possible to limit the amount of path information that is sent
as implied directories for each path you specify. With a modern rsync on the
sending side (beginning with 2.6.7), you can insert a dot and a slash into
the source path, like this:

rsync -avR /foo/./bar/baz.c remote:/tmp/

That would create /tmp/bar/baz.c on the remote machine. (Note that the
dot must be followed by a slash, so "/foo/." would not be abbreviated.) For
older rsync versions, you would need to use a chdir to limit the source
path. For example, when pushing files:

(cd /foo; rsync -avR bar/baz.c remote:/tmp/)

(Note that the parens put the two commands into a sub-shell, so that the
"cd" command doesn't remain in effect for future commands.) If you're
pulling files from an older rsync, use this idiom (but only for a non-daemon
transfer):

rsync -avR --rsync-path="cd /foo; rsync" \
remote:bar/baz.c /tmp/

--no-implied-dirs

This option affects the default behavior of the --relative option. When
it is specified, the attributes of the implied directories from the source
names are not included in the transfer. This means that the corresponding
path elements on the destination system are left unchanged if they exist,
and any missing implied directories are created with default attributes.
This even allows these implied path elements to have big differences, such
as being a symlink to a directory on the receiving side.

For instance, if a command-line arg or a files-from entry told rsync to
transfer the file "path/foo/file", the directories "path" and "path/foo" are
implied when --relative is used. If "path/foo" is a symlink to "bar" on the
destination system, the receiving rsync would ordinarily delete "path/foo",
recreate it as a directory, and receive the file into the new directory.
With --no-implied-dirs, the receiving rsync updates "path/foo/file" using
the existing path elements, which means that the file ends up being created
in "path/bar". Another way to accomplish this link preservation is to use
the --keep-dirlinks option (which will also affect symlinks to directories
in the rest of the transfer).

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Iia;,;:pdate: 2022/08/13 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

When pulling files from an rsync older than 3.0.0, you may need to use
this option if the sending side has a symlink in the path you request and
you wish the implied directories to be transferred as normal directories.

-b, --backup

With this option, preexisting destination files are renamed as each file
is transferred or deleted. You can control where the backup file goes and
what (if any) suffix gets appended using the --backup-dir and --suffix
options.

Note that if you don't specify --backup-dir, (1) the --omit-dir-times
option will be implied, and (2) if --delete is also in effect (without --
delete-excluded), rsync will add a "protect" filter-rule for the backup
suffix to the end of all your existing excludes (e.g. -f "P *~"). This will
prevent previously backed-up files from being deleted. Note that if you are
supplying your own filter rules, you may need to manually insert your own
exclude/protect rule somewhere higher up in the list so that it has a high
enough priority to be effective (e.g., if your rules specify a trailing
inclusion/exclusion of '*', the auto-added rule would never be reached).

--backup-dir=DIR

In combination with the --backup option, this tells rsync to store all
backups in the specified directory on the receiving side. This can be used
for incremental backups. You can additionally specify a backup suffix using
the --suffix option (otherwise the files backed up in the specified
directory will keep their original filenames).

Note that if you specify a relative path, the backup directory will be
relative to the destination directory, so you probably want to specify
either an absolute path or a path that starts with "../". If an rsync daemon
is the receiver, the backup dir cannot go outside the module's path
hierarchy, so take extra care not to delete it or copy into it.

- -suffix=SUFFIX

This option allows you to override the default backup suffix used with
the --backup (-b) option. The default suffix is a ~ if no --backup-dir was
specified, otherwise it is an empty string.

-u, --update

This forces rsync to skip any files which exist on the destination and
have a modified time that is newer than the source file. (If an existing
destination file has a modification time equal to the source file's, it will
be updated if the sizes are different.)

Note that this does not affect the copying of dirs, symlinks, or other
special files. Also, a difference of file format between the sender and
receiver is always considered to be important enough for an update, no
matter what date is on the objects. In other words, if the source has a
directory where the destination has a file, the transfer would occur
regardless of the timestamps.

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 13/49 Page de man de grsync (22 Jun 2014)

This option is a transfer rule, not an exclude, so it doesn't affect the
data that goes into the file-lists, and thus it doesn't affect deletions. It
just limits the files that the receiver requests to be transferred.

--inplace

This option changes how rsync transfers a file when its data needs to be
updated: instead of the default method of creating a new copy of the file
and moving it into place when it is complete, rsync instead writes the
updated data directly to the destination file.

This has several effects:

Hard links are not broken. This means the new data will be
visible through other hard links to the destination file. Moreover, attempts
to copy differing source files onto a multiply-linked destination file will
result in a "tug of war" with the destination data changing back and forth.

In-use binaries cannot be updated (either the 0S will prevent
this from happening, or binaries that attempt to swap-in their data will
misbehave or crash).

The file's data will be in an inconsistent state during the
transfer and will be left that way if the transfer is interrupted or if an
update fails.

A file that rsync cannot write to cannot be updated. While a
super user can update any file, a normal user needs to be granted write
permission for the open of the file for writing to be successful.

The efficiency of rsync's delta-transfer algorithm may be
reduced if some data in the destination file is overwritten before it can be
copied to a position later in the file. This does not apply if you use --
backup, since rsync is smart enough to use the backup file as the basis file
for the transfer.

WARNING: you should not use this option to update files that are being
accessed by others, so be careful when choosing to use this for a copy.

This option is useful for transferring large files with block-based
changes or appended data, and also on systems that are disk bound, not
network bound. It can also help keep a copy-on-write filesystem snapshot
from diverging the entire contents of a file that only has minor changes.

The option implies --partial (since an interrupted transfer does not
delete the file), but conflicts with --partial-dir and --delay-updates.
Prior to rsync 2.6.4 --inplace was also incompatible with --compare-dest and
--link-dest.

- -append

This causes rsync to update a file by appending data onto the end of the
file, which presumes that the data that already exists on the receiving side
is identical with the start of the file on the sending side. If a file needs
to be transferred and its size on the receiver is the same or longer than
the size on the sender, the file is skipped. This does not interfere with
the updating of a file's non-content attributes (e.g. permissions,

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update: 2022/08/13

22:14 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

ownership, etc.) when the file does not need to be transferred, nor does it
affect the updating of any non-regular files. Implies --inplace, but does
not conflict with --sparse (since it is always extending a file's length).

--append-verify

This works just like the --append option, but the existing data on the
receiving side is included in the full-file checksum verification step,
which will cause a file to be resent if the final verification step fails
(rsync uses a normal, non-appending --inplace transfer for the resend).

Note: prior to rsync 3.0.0, the --append option worked like --append-
verify, so if you are interacting with an older rsync (or the transfer is
using a protocol prior to 30), specifying either append option will initiate
an --append-verify transfer.

-d, --dirs
Tell the sending side to include any directories that are encountered.
Unlike --recursive, a directory's contents are not copied unless the

directory name specified is "." or ends with a trailing slash (e.g. ".",
"dir/.", "dir/", etc.). Without this option or the --recursive option, rsync
will skip all directories it encounters (and output a message to that effect
for each one). If you specify both --dirs and --recursive, --recursive takes
precedence.

The --dirs option is implied by the --files-from option or the --list-
only option (including an implied --list-only usage) if --recursive wasn't
specified (so that directories are seen in the listing). Specify --no-dirs
(or --no-d) if you want to turn this off.

There is also a backward-compatibility helper option, --old-dirs (or --
old-d) that tells rsync to use a hack of "-r --exclude='/*/*'" to get an
older rsync to list a single directory without recursing.

-1, --links
When symlinks are encountered, recreate the symlink on the destination.

-L, --copy-links

When symlinks are encountered, the item that they point to (the
referent) is copied, rather than the symlink. In older versions of rsync,
this option also had the side-effect of telling the receiving side to follow
symlinks, such as symlinks to directories. In a modern rsync such as this
one, you'll need to specify --keep-dirlinks (-K) to get this extra behavior.
The only exception is when sending files to an rsync that is too old to
understand -K -- in that case, the -L option will still have the side-effect
of -K on that older receiving rsync.

--copy-unsafe-links

This tells rsync to copy the referent of symbolic links that point
outside the copied tree. Absolute symlinks are also treated like ordinary
files, and so are any symlinks in the source path itself when --relative is

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 15/49 Page de man de grsync (22 Jun 2014)

used. This option has no additional effect if --copy-links was also
specified.

--safe-links

This tells rsync to ignore any symbolic links which point outside the
copied tree. All absolute symlinks are also ignored. Using this option in
conjunction with --relative may give unexpected results.

--munge-links

This option tells rsync to (1) modify all symlinks on the receiving side
in a way that makes them unusable but recoverable (see below), or (2) to
unmunge symlinks on the sending side that had been stored in a munged state.
This is useful if you don't quite trust the source of the data to not try to
slip in a symlink to a unexpected place.

The way rsync disables the use of symlinks is to prefix each one with
the string "/rsyncd-munged/". This prevents the links from being used as
long as that directory does not exist. When this option is enabled, rsync
will refuse to run if that path is a directory or a symlink to a directory.

The option only affects the client side of the transfer, so if you need
it to affect the server, specify it via --remote-option. (Note that in a
local transfer, the client side is the sender.)

This option has no affect on a daemon, since the daemon configures
whether it wants munged symlinks via its "munge symlinks" parameter. See
also the "munge-symlinks" perl script in the support directory of the source
code.

-k, --copy-dirlinks

This option causes the sending side to treat a symlink to a directory as
though it were a real directory. This is useful if you don't want symlinks
to non-directories to be affected, as they would be using --copy-links.

Without this option, if the sending side has replaced a directory with a
symlink to a directory, the receiving side will delete anything that is in
the way of the new symlink, including a directory hierarchy (as long as --
force or --delete is in effect).

See also --keep-dirlinks for an analogous option for the receiving side.

--copy-dirlinks applies to all symlinks to directories in the source. If
you want to follow only a few specified symlinks, a trick you can use is to
pass them as additional source args with a trailing slash, using --relative
to make the paths match up right. For example:

rsync -r --relative src/./ src/./follow-me/ dest/
This works because rsync calls lstat(2) on the source arg as given, and

the trailing slash makes lstat(2) follow the symlink, giving rise to a
directory in the file-list which overrides the symlink found during the scan

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update: 2022/08/13

22:14 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

of "src/./".

-K, --keep-dirlinks

This option causes the receiving side to treat a symlink to a directory
as though it were a real directory, but only if it matches a real directory
from the sender. Without this option, the receiver's symlink would be
deleted and replaced with a real directory.

For example, suppose you transfer a directory "foo" that contains a file
"file", but "foo" is a symlink to directory "bar" on the receiver. Without -
-keep-dirlinks, the receiver deletes symlink "foo", recreates it as a
directory, and receives the file into the new directory. With --keep-
dirlinks, the receiver keeps the symlink and "file" ends up in "bar".

One note of caution: if you use --keep-dirlinks, you must trust all the
symlinks in the copy! If it is possible for an untrusted user to create
their own symlink to any directory, the user could then (on a subsequent
copy) replace the symlink with a real directory and affect the content of
whatever directory the symlink references. For backup copies, you are better
off using something like a bind mount instead of a symlink to modify your
receiving hierarchy.

See also --copy-dirlinks for an analogous option for the sending side.

-H, --hard-links

This tells rsync to look for hard-linked files in the source and link
together the corresponding files on the destination. Without this option,
hard-linked files in the source are treated as though they were separate
files.

This option does NOT necessarily ensure that the pattern of hard links
on the destination exactly matches that on the source. Cases in which the
destination may end up with extra hard links include the following:

If the destination contains extraneous hard-links (more linking
than what is present in the source file list), the copying algorithm will
not break them explicitly. However, if one or more of the paths have content
differences, the normal file-update process will break those extra links
(unless you are using the --inplace option).

If you specify a --link-dest directory that contains hard links,
the linking of the destination files against the --link-dest files can cause
some paths in the destination to become linked together due to the --link-
dest associations.

Note that rsync can only detect hard links between files that are inside
the transfer set. If rsync updates a file that has extra hard-link
connections to files outside the transfer, that linkage will be broken. If
you are tempted to use the --inplace option to avoid this breakage, be very
careful that you know how your files are being updated so that you are
certain that no unintended changes happen due to lingering hard links (and

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 17/49 Page de man de grsync (22 Jun 2014)

see the --inplace option for more caveats).

If incremental recursion is active (see --recursive), rsync may transfer
a missing hard-linked file before it finds that another link for that
contents exists elsewhere in the hierarchy. This does not affect the
accuracy of the transfer (i.e. which files are hard-linked together), just
its efficiency (i.e. copying the data for a new, early copy of a hard-linked
file that could have been found later in the transfer in another member of
the hard-linked set of files). One way to avoid this inefficiency is to
disable incremental recursion using the --no-inc-recursive option.

-p, --perms

This option causes the receiving rsync to set the destination
permissions to be the same as the source permissions. (See also the --chmod
option for a way to modify what rsync considers to be the source
permissions.)

When this option is off, permissions are set as follows:

Existing files (including updated files) retain their existing
permissions, though the --executability option might change just the execute
permission for the file.

New files get their "normal" permission bits set to the source
file's permissions masked with the receiving directory's default permissions
(either the receiving process's umask, or the permissions specified via the
destination directory's default ACL), and their special permission bits
disabled except in the case where a new directory inherits a setgid bit from
its parent directory.

Thus, when --perms and --executability are both disabled, rsync's
behavior is the same as that of other file-copy utilities, such as cp(l) and
tar(1l).

In summary: to give destination files (both old and new) the source
permissions, use --perms. To give new files the destination-default
permissions (while leaving existing files unchanged), make sure that the --
perms option is off and use --chmod=ugo=rwX (which ensures that all non-
masked bits get enabled). If you'd care to make this latter behavior easier
to type, you could define a popt alias for it, such as putting this line in
the file ~/.popt (the following defines the -Z option, and includes --no-g
to use the default group of the destination dir):

rsync alias -Z --no-p --no-g --chmod=ugo=rwX
You could then use this new option in a command such as this one:
rsync -avZ src/ dest/

(Caveat: make sure that -a does not follow -Z, or it will re-enable the
two "--no-*" options mentioned above.)

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Iia;,;:pdate: 2022/08/13 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

The preservation of the destination's setgid bit on newly-created
directories when --perms is off was added in rsync 2.6.7. Older rsync
versions erroneously preserved the three special permission bits for newly-
created files when --perms was off, while overriding the destination's
setgid bit setting on a newly-created directory. Default ACL observance was
added to the ACL patch for rsync 2.6.7, so older (or non-ACL-enabled) rsyncs
use the umask even if default ACLs are present. (Keep in mind that it is the
version of the receiving rsync that affects these behaviors.)

-E, --executability

This option causes rsync to preserve the executability (or non-
executability) of regular files when --perms is not enabled. A regular file
is considered to be executable if at least one 'x' is turned on in its
permissions. When an existing destination file's executability differs from
that of the corresponding source file, rsync modifies the destination file's
permissions as follows:

To make a file non-executable, rsync turns off all its 'x'
permissions.

To make a file executable, rsync turns on each 'x' permission
that has a corresponding 'r' permission enabled.

If --perms is enabled, this option is ignored.

-A, --acls
This option causes rsync to update the destination ACLs to be the same
as the source ACLs. The option also implies --perms.

The source and destination systems must have compatible ACL entries for
this option to work properly. See the --fake-super option for a way to
backup and restore ACLs that are not compatible.

-X, --xattrs
This option causes rsync to update the destination extended attributes
to be the same as the source ones.

For systems that support extended-attribute namespaces, a copy being
done by a super-user copies all namespaces except system.*. A normal user
only copies the user.* namespace. To be able to backup and restore non-user
namespaces as a normal user, see the --fake-super option.

Note that this option does not copy rsyncs special xattr values (e.g.
those used by --fake-super) unless you repeat the option (e.g. -XX). This
"copy all xattrs" mode cannot be used with --fake-super.

- -chmod

This option tells rsync to apply one or more comma-separated "chmod"
modes to the permission of the files in the transfer. The resulting value is
treated as though it were the permissions that the sending side supplied for
the file, which means that this option can seem to have no effect on

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 19/49 Page de man de grsync (22 Jun 2014)

existing files if --perms is not enabled.

In addition to the normal parsing rules specified in the chmod(1)
manpage, you can specify an item that should only apply to a directory by
prefixing it with a 'D', or specify an item that should only apply to a file
by prefixing it with a 'F'. For example, the following will ensure that all
directories get marked set-gid, that no files are other-writable, that both
are user-writable and group-writable, and that both have consistent
executability across all bits:

- -chmod=Dg+s,ug+w, Fo-w, +X
Using octal mode numbers is also allowed:
- -chmod=D2775, F664

It is also legal to specify multiple --chmod options, as each additional
option is just appended to the list of changes to make.

See the --perms and --executability options for how the resulting
permission value can be applied to the files in the transfer.

-0, --owner

This option causes rsync to set the owner of the destination file to be
the same as the source file, but only if the receiving rsync is being run as
the super-user (see also the --super and --fake-super options). Without this
option, the owner of new and/or transferred files are set to the invoking
user on the receiving side.

The preservation of ownership will associate matching names by default,
but may fall back to using the ID number in some circumstances (see also the
--numeric-ids option for a full discussion).

-g, --group

This option causes rsync to set the group of the destination file to be
the same as the source file. If the receiving program is not running as the
super-user (or if --no-super was specified), only groups that the invoking
user on the receiving side is a member of will be preserved. Without this
option, the group is set to the default group of the invoking user on the
receiving side.

The preservation of group information will associate matching names by
default, but may fall back to using the ID number in some circumstances (see
also the --numeric-ids option for a full discussion).

--devices

This option causes rsync to transfer character and block device files to
the remote system to recreate these devices. This option has no effect if
the receiving rsync is not run as the super-user (see also the --super and -
-fake-super options).

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update: 2022/08/13

22:14 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

--specials
This option causes rsync to transfer special files such as named sockets
and fifos.

-D
The -D option is equivalent to --devices --specials.

-t, --times

This tells rsync to transfer modification times along with the files and
update them on the remote system. Note that if this option is not used, the
optimization that excludes files that have not been modified cannot be
effective; in other words, a missing -t or -a will cause the next transfer
to behave as if it used -I, causing all files to be updated (though rsync's
delta-transfer algorithm will make the update fairly efficient if the files
haven't actually changed, you're much better off using -t).

-0, --omit-dir-times

This tells rsync to omit directories when it is preserving modification
times (see --times). If NFS is sharing the directories on the receiving
side, it is a good idea to use -0. This option is inferred if you use --
backup without --backup-dir.

This option also has the side-effect of avoiding early creation of
directories in incremental recursion copies. The default --inc-recursive
copying normally does an early-create pass of all the sub-directories in a
parent directory in order for it to be able to then set the modify time of
the parent directory right away (without having to delay that until a bunch
of recursive copying has finished). This early-create idiom is not necessary
if directory modify times are not being preserved, so it is skipped. Since
early-create directories don't have accurate mode, mtime, or ownership, the
use of this option can help when someone wants to avoid these partially-
finished directories.

-J, --omit-link-times
This tells rsync to omit symlinks when it is preserving modification
times (see --times).

--super

This tells the receiving side to attempt super-user activities even if
the receiving rsync wasn't run by the super-user. These activities include:
preserving users via the --owner option, preserving all groups (not just the
current user's groups) via the --groups option, and copying devices via the
--devices option. This is useful for systems that allow such activities
without being the super-user, and also for ensuring that you will get errors
if the receiving side isn't being run as the super-user. To turn off super-
user activities, the super-user can use --no-super.

- -fake-super
When this option is enabled, rsync simulates super-user activities by
saving/restoring the privileged attributes via special extended attributes

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 21/49 Page de man de grsync (22 Jun 2014)

that are attached to each file (as needed). This includes the file's owner
and group (if it is not the default), the file's device info (device &
special files are created as empty text files), and any permission bits that
we won't allow to be set on the real file (e.g. the real file gets u-s,g-
s,o-t for safety) or that would limit the owner's access (since the real
super-user can always access/change a file, the files we create can always
be accessed/changed by the creating user). This option also handles ACLs (if
--acls was specified) and non-user extended attributes (if --xattrs was
specified).

This is a good way to backup data without using a super-user, and to
store ACLs from incompatible systems.

The --fake-super option only affects the side where the option is used.
To affect the remote side of a remote-shell connection, use the --remote-
option (-M) option:

rsync -av -M--fake-super /src/ host:/dest/

For a local copy, this option affects both the source and the
destination. If you wish a local copy to enable this option just for the
destination files, specify -M--fake-super. If you wish a local copy to
enable this option just for the source files, combine --fake-super with -M--
super.

This option is overridden by both --super and --no-super.
See also the "fake super" setting in the daemon's rsyncd.conf file.

-S, --sparse

Try to handle sparse files efficiently so they take up less space on the
destination. Conflicts with --inplace because it's not possible to overwrite
data in a sparse fashion.

--preallocate

This tells the receiver to allocate each destination file to its
eventual size before writing data to the file. Rsync will only use the real
filesystem-level preallocation support provided by Linux's fallocate(2)
system call or Cygwin's posix fallocate(3), not the slow glibc
implementation that writes a zero byte into each block.

Without this option, larger files may not be entirely contiguous on the
filesystem, but with this option rsync will probably copy more slowly. If
the destination is not an extent-supporting filesystem (such as ext4, xfs,
NTFS, etc.), this option may have no positive effect at all.

-n, --dry-run

This makes rsync perform a trial run that doesn't make any changes (and
produces mostly the same output as a real run). It is most commonly used in
combination with the -v, --verbose and/or -i, --itemize-changes options to
see what an rsync command is going to do before one actually runs it.

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update: 2022/08/13

22:14 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

The output of --itemize-changes is supposed to be exactly the same on a
dry run and a subsequent real run (barring intentional trickery and system
call failures); if it isn't, that's a bug. Other output should be mostly
unchanged, but may differ in some areas. Notably, a dry run does not send
the actual data for file transfers, so --progress has no effect, the "bytes
sent", "bytes received", "literal data", and "matched data" statistics are
too small, and the "speedup" value is equivalent to a run where no file
transfers were needed.

-W, --whole-file

With this option rsync's delta-transfer algorithm is not used and the
whole file is sent as-is instead. The transfer may be faster if this option
is used when the bandwidth between the source and destination machines is
higher than the bandwidth to disk (especially when the "disk" is actually a
networked filesystem). This is the default when both the source and
destination are specified as local paths, but only if no batch-writing
option is in effect.

-X, --one-file-system

This tells rsync to avoid crossing a filesystem boundary when recursing.
This does not limit the user's ability to specify items to copy from
multiple filesystems, just rsync's recursion through the hierarchy of each
directory that the user specified, and also the analogous recursion on the
receiving side during deletion. Also keep in mind that rsync treats a "bind"
mount to the same device as being on the same filesystem.

If this option is repeated, rsync omits all mount-point directories from
the copy. Otherwise, it includes an empty directory at each mount-point it
encounters (using the attributes of the mounted directory because those of
the underlying mount-point directory are inaccessible).

If rsync has been told to collapse symlinks (via --copy-links or --copy-
unsafe-links), a symlink to a directory on another device is treated like a
mount-point. Symlinks to non-directories are unaffected by this option.

--existing, --ignore-non-existing

This tells rsync to skip creating files (including directories) that do
not exist yet on the destination. If this option is combined with the --
ignore-existing option, no files will be updated (which can be useful if all
you want to do is delete extraneous files).

This option is a transfer rule, not an exclude, so it doesn't affect the
data that goes into the file-lists, and thus it doesn't affect deletions. It
just limits the files that the receiver requests to be transferred.

--ignore-existing

This tells rsync to skip updating files that already exist on the
destination (this does not ignore existing directories, or nothing would get
done). See also --existing.

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 23/49 Page de man de grsync (22 Jun 2014)

This option is a transfer rule, not an exclude, so it doesn't affect the
data that goes into the file-lists, and thus it doesn't affect deletions. It
just limits the files that the receiver requests to be transferred.

This option can be useful for those doing backups using the --link-dest
option when they need to continue a backup run that got interrupted. Since a
--link-dest run is copied into a new directory hierarchy (when it is used
properly), using --ignore existing will ensure that the already-handled
files don't get tweaked (which avoids a change in permissions on the hard-
linked files). This does mean that this option is only looking at the
existing files in the destination hierarchy itself.

--remove-source-files

This tells rsync to remove from the sending side the files (meaning non-
directories) that are a part of the transfer and have been successfully
duplicated on the receiving side.

Note that you should only use this option on source files that are
quiescent. If you are using this to move files that show up in a particular
directory over to another host, make sure that the finished files get
renamed into the source directory, not directly written into it, so that
rsync can't possibly transfer a file that is not yet fully written. If you
can't first write the files into a different directory, you should use a
naming idiom that lets rsync avoid transferring files that are not yet
finished (e.g. name the file "foo.new" when it is written, rename it to
"foo" when it is done, and then use the option --exclude='*.new' for the
rsync transfer).

Starting with 3.1.0, rsync will skip the sender-side removal (and output
an error) if the file's size or modify time has not stayed unchanged.

--delete

This tells rsync to delete extraneous files from the receiving side
(ones that aren't on the sending side), but only for the directories that
are being synchronized. You must have asked rsync to send the whole
directory (e.g. "dir" or "dir/") without using a wildcard for the
directory's contents (e.g. "dir/*") since the wildcard is expanded by the
shell and rsync thus gets a request to transfer individual files, not the
files' parent directory. Files that are excluded from the transfer are also
excluded from being deleted unless you use the --delete-excluded option or
mark the rules as only matching on the sending side (see the include/exclude
modifiers in the FILTER RULES section).

Prior to rsync 2.6.7, this option would have no effect unless --
recursive was enabled. Beginning with 2.6.7, deletions will also occur when
--dirs (-d) is enabled, but only for directories whose contents are being
copied.

This option can be dangerous if used incorrectly! It is a very good idea
to first try a run using the --dry-run option (-n) to see what files are
going to be deleted.

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update: 2022/08/13

22:14 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

If the sending side detects any I/0 errors, then the deletion of any
files at the destination will be automatically disabled. This is to prevent
temporary filesystem failures (such as NFS errors) on the sending side from
causing a massive deletion of files on the destination. You can override
this with the --ignore-errors option.

The --delete option may be combined with one of the --delete-WHEN
options without conflict, as well as --delete-excluded. However, if none of
the --delete-WHEN options are specified, rsync will choose the --delete-
during algorithm when talking to rsync 3.0.0 or newer, and the --delete-
before algorithm when talking to an older rsync. See also --delete-delay and
--delete-after.

--delete-before

Request that the file-deletions on the receiving side be done before the
transfer starts. See --delete (which is implied) for more details on file-
deletion.

Deleting before the transfer is helpful if the filesystem is tight for
space and removing extraneous files would help to make the transfer
possible. However, it does introduce a delay before the start of the
transfer, and this delay might cause the transfer to timeout (if --timeout
was specified). It also forces rsync to use the old, non-incremental
recursion algorithm that requires rsync to scan all the files in the
transfer into memory at once (see --recursive).

--delete-during, --del

Request that the file-deletions on the receiving side be done
incrementally as the transfer happens. The per-directory delete scan is done
right before each directory is checked for updates, so it behaves like a
more efficient --delete-before, including doing the deletions prior to any
per-directory filter files being updated. This option was first added in
rsync version 2.6.4. See --delete (which is implied) for more details on
file-deletion.

--delete-delay

Request that the file-deletions on the receiving side be computed during
the transfer (like --delete-during), and then removed after the transfer
completes. This is useful when combined with --delay-updates and/or --fuzzy,
and is more efficient than using --delete-after (but can behave differently,
since --delete-after computes the deletions in a separate pass after all
updates are done). If the number of removed files overflows an internal
buffer, a temporary file will be created on the receiving side to hold the
names (it is removed while open, so you shouldn't see it during the
transfer). If the creation of the temporary file fails, rsync will try to
fall back to using --delete-after (which it cannot do if --recursive is
doing an incremental scan). See --delete (which is implied) for more details
on file-deletion.

--delete-after

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 25/49 Page de man de grsync (22 Jun 2014)

Request that the file-deletions on the receiving side be done after the
transfer has completed. This is useful if you are sending new per-directory
merge files as a part of the transfer and you want their exclusions to take
effect for the delete phase of the current transfer. It also forces rsync to
use the old, non-incremental recursion algorithm that requires rsync to scan
all the files in the transfer into memory at once (see --recursive). See --
delete (which is implied) for more details on file-deletion.

--delete-excluded

In addition to deleting the files on the receiving side that are not on
the sending side, this tells rsync to also delete any files on the receiving
side that are excluded (see --exclude). See the FILTER RULES section for a
way to make individual exclusions behave this way on the receiver, and for a
way to protect files from --delete-excluded. See --delete (which is implied)
for more details on file-deletion.

--ignore-missing-args

When rsync is first processing the explicitly requested source files
(e.g. command-line arguments or --files-from entries), it is normally an
error if the file cannot be found. This option suppresses that error, and
does not try to transfer the file. This does not affect subsequent vanished-
file errors if a file was initially found to be present and later is no
longer there.

--delete-missing-args

This option takes the behavior of (the implied) --ignore-missing-args
option a step farther: each missing arg will become a deletion request of
the corresponding destination file on the receiving side (should it exist).
If the destination file is a non-empty directory, it will only be
successfully deleted if --force or --delete are in effect. Other than that,
this option is independent of any other type of delete processing.

The missing source files are represented by special file-list entries
which display as a "*missing" entry in the --list-only output.

--ignore-errors
Tells --delete to go ahead and delete files even when there are I/0
errors.

--force

This option tells rsync to delete a non-empty directory when it is to be
replaced by a non-directory. This is only relevant if deletions are not
active (see --delete for details).

Note for older rsync versions: --force used to still be required when
using --delete-after, and it used to be non-functional unless the --
recursive option was also enabled.

- -max-delete=NUM
This tells rsync not to delete more than NUM files or directories. If
that limit is exceeded, all further deletions are skipped through the end of

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Iia;,;:pdate: 2022/08/13 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

the transfer. At the end, rsync outputs a warning (including a count of the
skipped deletions) and exits with an error code of 25 (unless some more
important error condition also occurred).

Beginning with version 3.0.0, you may specify --max-delete=0 to be
warned about any extraneous files in the destination without removing any of
them. Older clients interpreted this as "unlimited", so if you don't know
what version the client is, you can use the less obvious --max-delete=-1 as
a backward-compatible way to specify that no deletions be allowed (though
really old versions didn't warn when the limit was exceeded).

--max-size=SIZE

This tells rsync to avoid transferring any file that is larger than the
specified SIZE. The SIZE value can be suffixed with a string to indicate a
size multiplier, and may be a fractional value (e.g. "--max-size=1l.5m").

This option is a transfer rule, not an exclude, so it doesn't affect the
data that goes into the file-lists, and thus it doesn't affect deletions. It
just limits the files that the receiver requests to be transferred.

The suffixes are as follows: "K" (or "KiB") is a kibibyte (1024), "M"
(or "MiB") is a mebibyte (1024*1024), and "G" (or "GiB") is a gibibyte
(1024*1024*1024). If you want the multiplier to be 1000 instead of 1024, use
"KB", "MB", or "GB". (Note: lower-case is also accepted for all values.)
Finally, if the suffix ends in either "+1" or "-1", the value will be offset
by one byte in the indicated direction.

Examples: --max-size=1.5mb-1 is 1499999 bytes, and --max-size=2g+1l is
2147483649 bytes.

Note that rsync versions prior to 3.1.0 did not allow --max-size=0.

--min-size=SIZE

This tells rsync to avoid transferring any file that is smaller than the
specified SIZE, which can help in not transferring small, junk files. See
the --max-size option for a description of SIZE and other information.

Note that rsync versions prior to 3.1.0 did not allow --min-size=0.

-B, --block-size=BLOCKSIZE

This forces the block size used in rsync's delta-transfer algorithm to a
fixed value. It is normally selected based on the size of each file being
updated. See the technical report for details.

-e, --rsh=COMMAND

This option allows you to choose an alternative remote shell program to
use for communication between the local and remote copies of rsync.
Typically, rsync is configured to use ssh by default, but you may prefer to
use rsh on a local network.

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 27/49 Page de man de grsync (22 Jun 2014)

If this option is used with [user@]host::module/path, then the remote
shell COMMAND will be used to run an rsync daemon on the remote host, and
all data will be transmitted through that remote shell connection, rather
than through a direct socket connection to a running rsync daemon on the
remote host. See the section "USING RSYNC-DAEMON FEATURES VIA A REMOTE-SHELL
CONNECTION" above.

Command-1line arguments are permitted in COMMAND provided that COMMAND is
presented to rsync as a single argument. You must use spaces (not tabs or
other whitespace) to separate the command and args from each other, and you
can use single- and/or double-quotes to preserve spaces in an argument (but
not backslashes). Note that doubling a single-quote inside a single-quoted
string gives you a single-quote; likewise for double-quotes (though you need
to pay attention to which quotes your shell is parsing and which quotes
rsync is parsing). Some examples:

-e 'ssh -p 2234
-e 'ssh -o "ProxyCommand nohup ssh firewall nc -wl %h %p"'

(Note that ssh users can alternately customize site-specific connect
options in their .ssh/config file.)

You can also choose the remote shell program using the RSYNC RSH
environment variable, which accepts the same range of values as -e.

See also the --blocking-io option which is affected by this option.

- -rsync-path=PROGRAM

Use this to specify what program is to be run on the remote machine to
start-up rsync. Often used when rsync is not in the default remote-shell's
path (e.g. --rsync-path=/usr/local/bin/rsync). Note that PROGRAM is run with
the help of a shell, so it can be any program, script, or command sequence
you'd care to run, so long as it does not corrupt the standard-in &
standard-out that rsync is using to communicate.

One tricky example is to set a different default directory on the remote
machine for use with the --relative option. For instance:

rsync -avR --rsync-path="cd /a/b && rsync" host:c/d /e/

-M, --remote-option=0PTION

This option is used for more advanced situations where you want certain
effects to be limited to one side of the transfer only. For instance, if you
want to pass --log-file=FILE and --fake-super to the remote system, specify
it like this:

rsync -av -M --log-file=foo -M--fake-super src/ dest/
If you want to have an option affect only the local side of a transfer

when it normally affects both sides, send its negation to the remote side.
Like this:

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update: 2022/08/13

22:14 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

rsync -av -x -M--no-x src/ dest/

Be cautious using this, as it is possible to toggle an option that will
cause rsync to have a different idea about what data to expect next over the
socket, and that will make it fail in a cryptic fashion.

Note that it is best to use a separate --remote-option for each option
you want to pass. This makes your useage compatible with the --protect-args
option. If that option is off, any spaces in your remote options will be
split by the remote shell unless you take steps to protect them.

When performing a local transfer, the "local" side is the sender and the
"remote" side is the receiver.

Note some versions of the popt option-parsing library have a bug in them
that prevents you from using an adjacent arg with an equal in it next to a
short option letter (e.g. -M--log-file=/tmp/foo. If this bug affects your
version of popt, you can use the version of popt that is included with
rsync.

-C, --cvs-exclude

This is a useful shorthand for excluding a broad range of files that you
often don't want to transfer between systems. It uses a similar algorithm to
CVS to determine if a file should be ignored.

The exclude list is initialized to exclude the following items (these
initial items are marked as perishable -- see the FILTER RULES section):

RCS SCCS CVS CVS.adm RCSLOG cvslog.* tags TAGS .make.state
.nse depinfo *~ #* .#* ,* ¢$* *¢ *,old *.bak *.BAK *.orig *.rej .del-* *.a
*.0lb *.0 *.0bj *.so *.exe *.Z *.elc *.1ln core .svn/ .git/ .hg/ .bzr/

then, files listed in a $HOME/.cvsignore are added to the list and any
files listed in the CVSIGNORE environment variable (all cvsignore names are
delimited by whitespace).

Finally, any file is ignored if it is in the same directory as a
.cvsignore file and matches one of the patterns listed therein. Unlike
rsync's filter/exclude files, these patterns are split on whitespace. See
the cvs(1l) manual for more information.

If you're combining -C with your own --filter rules, you should note
that these CVS excludes are appended at the end of your own rules,
regardless of where the -C was placed on the command-line. This makes them a
lower priority than any rules you specified explicitly. If you want to
control where these CVS excludes get inserted into your filter rules, you
should omit the -C as a command-line option and use a combination of --
filter=:C and --filter=-C (either on your command-line or by putting the
":C" and "-C" rules into a filter file with your other rules). The first
option turns on the per-directory scanning for the .cvsignore file. The

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 29/49 Page de man de grsync (22 Jun 2014)

second option does a one-time import of the CVS excludes mentioned above.

-f, --filter=RULE

This option allows you to add rules to selectively exclude certain files
from the list of files to be transferred. This is most useful in combination
with a recursive transfer.

You may use as many --filter options on the command line as you like to
build up the list of files to exclude. If the filter contains whitespace, be
sure to quote it so that the shell gives the rule to rsync as a single
argument. The text below also mentions that you can use an underscore to
replace the space that separates a rule from its arg.

See the FILTER RULES section for detailed information on this option.

-F
The -F option is a shorthand for adding two --filter rules to your
command. The first time it is used is a shorthand for this rule:

--filter='dir-merge /.rsync-filter'

This tells rsync to look for per-directory .rsync-filter files that have
been sprinkled through the hierarchy and use their rules to filter the files
in the transfer. If -F is repeated, it is a shorthand for this rule:

--filter='exclude .rsync-filter'
This filters out the .rsync-filter files themselves from the transfer.

See the FILTER RULES section for detailed information on how these
options work.

- -exclude=PATTERN

This option is a simplified form of the --filter option that defaults to
an exclude rule and does not allow the full rule-parsing syntax of normal
filter rules.

See the FILTER RULES section for detailed information on this option.

--exclude-from=FILE

This option is related to the --exclude option, but it specifies a FILE
that contains exclude patterns (one per line). Blank lines in the file and
lines starting with ';' or '#' are ignored. If FILE is -, the list will be
read from standard input.

--include=PATTERN

This option is a simplified form of the --filter option that defaults to
an include rule and does not allow the full rule-parsing syntax of normal
filter rules.

See the FILTER RULES section for detailed information on this option.

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update: 2022/08/13
22:14
--include-from=FILE

This option is related to the --include option, but it specifies a FILE
that contains include patterns (one per line). Blank lines in the file and
lines starting with ';' or '#' are ignored. If FILE is -, the list will be
read from standard input.

logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

--files-from=FILE

Using this option allows you to specify the exact list of files to
transfer (as read from the specified FILE or - for standard input). It also
tweaks the default behavior of rsync to make transferring just the specified
files and directories easier:

The --relative (-R) option is implied, which preserves the path
information that is specified for each item in the file (use --no-relative
or --no-R if you want to turn that off).

The --dirs (-d) option is implied, which will create directories
specified in the list on the destination rather than noisily skipping them
(use --no-dirs or --no-d if you want to turn that off).

The --archive (-a) option's behavior does not imply --recursive
(-r), so specify it explicitly, if you want it.

These side-effects change the default state of rsync, so the
position of the --files-from option on the command-line has no bearing on
how other options are parsed (e.g. -a works the same before or after --
files-from, as does --no-R and all other options).

The filenames that are read from the FILE are all relative to the source
dir -- any leading slashes are removed and no ".." references are allowed to
go higher than the source dir. For example, take this command:

rsync -a --files-from=/tmp/foo /usr remote:/backup

If /tmp/foo contains the string "bin" (or even "/bin"), the /usr/bin
directory will be created as /backup/bin on the remote host. If it contains
"bin/" (note the trailing slash), the immediate contents of the directory
would also be sent (without needing to be explicitly mentioned in the file -
- this began in version 2.6.4). In both cases, if the -r option was enabled,
that dir's entire hierarchy would also be transferred (keep in mind that -r
needs to be specified explicitly with --files-from, since it is not implied
by -a). Also note that the effect of the (enabled by default) --relative
option is to duplicate only the path info that is read from the file -- it
does not force the duplication of the source-spec path (/usr in this case).

In addition, the --files-from file can be read from the remote host
instead of the local host if you specify a "host:" in front of the file (the
host must match one end of the transfer). As a short-cut, you can specify
just a prefix of ":" to mean "use the remote end of the transfer". For
example:

rsync -a --files-from=:/path/file-list src:/ /tmp/copy

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 31/49 Page de man de grsync (22 Jun 2014)

This would copy all the files specified in the /path/file-list file that
was located on the remote "src" host.

If the --iconv and --protect-args options are specified and the --files-
from filenames are being sent from one host to another, the filenames will
be translated from the sending host's charset to the receiving host's
charset.

NOTE: sorting the list of files in the --files-from input helps rsync to
be more efficient, as it will avoid re-visiting the path elements that are
shared between adjacent entries. If the input is not sorted, some path
elements (implied directories) may end up being scanned multiple times, and
rsync will eventually unduplicate them after they get turned into file-list
elements.

-0, --from0@

This tells rsync that the rules/filenames it reads from a file are
terminated by a null ('\0') character, not a NL, CR, or CR+LF. This affects
--exclude-from, --include-from, --files-from, and any merged files specified
in a --filter rule. It does not affect --cvs-exclude (since all names read
from a .cvsignore file are split on whitespace).

-S, --protect-args

This option sends all filenames and most options to the remote rsync
without allowing the remote shell to interpret them. This means that spaces
are not split in names, and any non-wildcard special characters are not
translated (such as ~, $, ;, &, etc.). Wildcards are expanded on the remote
host by rsync (instead of the shell doing it).

If you use this option with --iconv, the args related to the remote side
will also be translated from the local to the remote character-set. The
translation happens before wild-cards are expanded. See also the --files-
from option.

You may also control this option via the RSYNC PROTECT ARGS environment
variable. If this variable has a non-zero value, this option will be enabled
by default, otherwise it will be disabled by default. Either state is
overridden by a manually specified positive or negative version of this
option (note that --no-s and --no-protect-args are the negative versions).
Since this option was first introduced in 3.0.0, you'll need to make sure
it's disabled if you ever need to interact with a remote rsync that is older
than that.

Rsync can also be configured (at build time) to have this option enabled
by default (with is overridden by both the environment and the command-
line). This option will eventually become a new default setting at some as-
yet-undetermined point in the future.

-T, --temp-dir=DIR
This option instructs rsync to use DIR as a scratch directory when
creating temporary copies of the files transferred on the receiving side.

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Iia;,;:pdate: 2022/08/13 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

The default behavior is to create each temporary file in the same directory
as the associated destination file. Beginning with rsync 3.1.1, the temp-
file names inside the specified DIR will not be prefixed with an extra dot
(though they will still have a random suffix added).

This option is most often used when the receiving disk partition does
not have enough free space to hold a copy of the largest file in the
transfer. In this case (i.e. when the scratch directory is on a different
disk partition), rsync will not be able to rename each received temporary
file over the top of the associated destination file, but instead must copy
it into place. Rsync does this by copying the file over the top of the
destination file, which means that the destination file will contain
truncated data during this copy. If this were not done this way (even if the
destination file were first removed, the data locally copied to a temporary
file in the destination directory, and then renamed into place) it would be
possible for the old file to continue taking up disk space (if someone had
it open), and thus there might not be enough room to fit the new version on
the disk at the same time.

If you are using this option for reasons other than a shortage of disk
space, you may wish to combine it with the --delay-updates option, which
will ensure that all copied files get put into subdirectories in the
destination hierarchy, awaiting the end of the transfer. If you don't have
enough room to duplicate all the arriving files on the destination
partition, another way to tell rsync that you aren't overly concerned about
disk space is to use the --partial-dir option with a relative path; because
this tells rsync that it is OK to stash off a copy of a single file in a
subdir in the destination hierarchy, rsync will use the partial-dir as a
staging area to bring over the copied file, and then rename it into place
from there. (Specifying a --partial-dir with an absolute path does not have
this side-effect.)

-y, --fuzzy

This option tells rsync that it should look for a basis file for any
destination file that is missing. The current algorithm looks in the same
directory as the destination file for either a file that has an identical
size and modified-time, or a similarly-named file. If found, rsync uses the
fuzzy basis file to try to speed up the transfer.

If the option is repeated, the fuzzy scan will also be done in any
matching alternate destination directories that are specified via --compare-
dest, --copy-dest, or --link-dest.

Note that the use of the --delete option might get rid of any potential
fuzzy-match files, so either use --delete-after or specify some filename
exclusions if you need to prevent this.

--compare-dest=DIR
This option instructs rsync to use DIR on the destination machine as an
additional hierarchy to compare destination files against doing transfers

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 33/49 Page de man de grsync (22 Jun 2014)

(if the files are missing in the destination directory). If a file is found
in DIR that is identical to the sender's file, the file will NOT be
transferred to the destination directory. This is useful for creating a
sparse backup of just files that have changed from an earlier backup. This
option is typically used to copy into an empty (or newly created) directory.

Beginning in version 2.6.4, multiple --compare-dest directories may be
provided, which will cause rsync to search the list in the order specified
for an exact match. If a match is found that differs only in attributes, a
local copy is made and the attributes updated. If a match is not found, a
basis file from one of the DIRs will be selected to try to speed up the
transfer.

If DIR is a relative path, it is relative to the destination directory.
See also --copy-dest and --link-dest.

NOTE: beginning with version 3.1.0, rsync will remove a file from a non-
empty destination hierarchy if an exact match is found in one of the
compare-dest hierarchies (making the end result more closely match a fresh
copy) .

--copy-dest=DIR

This option behaves like --compare-dest, but rsync will also copy
unchanged files found in DIR to the destination directory using a local
copy. This is useful for doing transfers to a new destination while leaving
existing files intact, and then doing a flash-cutover when all files have
been successfully transferred.

Multiple --copy-dest directories may be provided, which will cause rsync
to search the list in the order specified for an unchanged file. If a match
is not found, a basis file from one of the DIRs will be selected to try to
speed up the transfer.

If DIR is a relative path, it is relative to the destination directory.
See also --compare-dest and --link-dest.

--link-dest=DIR

This option behaves like --copy-dest, but unchanged files are hard
linked from DIR to the destination directory. The files must be identical in
all preserved attributes (e.g. permissions, possibly ownership) in order for
the files to be linked together. An example:

rsync -av --link-dest=$PWD/prior dir host:src _dir/ new dir/

If file's aren't linking, double-check their attributes. Also check if
some attributes are getting forced outside of rsync's control, such a mount
option that squishes root to a single user, or mounts a removable drive with
generic ownership (such as 0S X's "Ignore ownership on this volume" option).

Beginning in version 2.6.4, multiple --link-dest directories may be
provided, which will cause rsync to search the list in the order specified

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update: 2022/08/13

22:14 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

for an exact match. If a match is found that differs only in attributes, a
local copy is made and the attributes updated. If a match is not found, a
basis file from one of the DIRs will be selected to try to speed up the
transfer.

This option works best when copying into an empty destination hierarchy,
as existing files may get their attributes tweaked, and that can affect
alternate destination files via hard-links. Also, itemizing of changes can
get a bit muddled. Note that prior to version 3.1.0, an alternate-directory
exact match would never be found (nor linked into the destination) when a
destination file already exists.

Note that if you combine this option with --ignore-times, rsync will not
link any files together because it only links identical files together as a
substitute for transferring the file, never as an additional check after the
file is updated.

If DIR is a relative path, it is relative to the destination directory.
See also --compare-dest and --copy-dest.

Note that rsync versions prior to 2.6.1 had a bug that could prevent --
link-dest from working properly for a non-super-user when -o was specified
(or implied by -a). You can work-around this bug by avoiding the -o option
when sending to an old rsync.

-z, --compress

With this option, rsync compresses the file data as it is sent to the
destination machine, which reduces the amount of data being transmitted --
something that is useful over a slow connection.

Note that this option typically achieves better compression ratios than
can be achieved by using a compressing remote shell or a compressing
transport because it takes advantage of the implicit information in the
matching data blocks that are not explicitly sent over the connection. This
matching-data compression comes at a cost of CPU, though, and can be
disabled by repeating the -z option, but only if both sides are at least
version 3.1.1.

Note that if your version of rsync was compiled with an external zlib
(instead of the zlib that comes packaged with rsync) then it will not
support the old-style compression, only the new-style (repeated-option)
compression. In the future this new-style compression will likely become the
default.

The client rsync requests new-style compression on the server via the --
new-compress option, so if you see that option rejected it means that the
server is not new enough to support -zz. Rsync also accepts the --old-
compress option for a future time when new-style compression becomes the
default.

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 35/49 Page de man de grsync (22 Jun 2014)

See the --skip-compress option for the default list of file suffixes
that will not be compressed.

--compress-level=NUM
Explicitly set the compression level to use (see --compress) instead of
letting it default. If NUM is non-zero, the --compress option is implied.

--skip-compress=LIST
Override the list of file suffixes that will not be compressed. The LIST
should be one or more file suffixes (without the dot) separated by slashes

(/).

You may specify an empty string to indicate that no file should be
skipped.

Simple character-class matching is supported: each must consist of a
list of letters inside the square brackets (e.g. no special classes, such as
"[:alpha:]", are supported, and '-' has no special meaning).

The characters asterisk (*) and question-mark (?) have no special
meaning.

Here's an example that specifies 6 suffixes to skip (since 1 of the 5
rules matches 2 suffixes):

--skip-compress=gz/jpg/mp[34]/7z/bz2

The default list of suffixes that will not be compressed is this (in
this version of rsync):

7z ace avi bz2 deb gpg gz iso jpeg jpg lz lzma lzo mov mp3 mp4 ogg png
rar rpm rzip tbz tgz tlz txz xz z zip

This list will be replaced by your --skip-compress list in all but one
situation: a copy from a daemon rsync will add your skipped suffixes to its
list of non-compressing files (and its list may be configured to a different
default).

--numeric-1ids
With this option rsync will transfer numeric group and user IDs rather
than using user and group names and mapping them at both ends.

By default rsync will use the username and groupname to determine what
ownership to give files. The special uid 0 and the special group 0 are never
mapped via user/group names even if the --numeric-ids option is not
specified.

If a user or group has no name on the source system or it has no match
on the destination system, then the numeric ID from the source system is
used instead. See also the comments on the "use chroot" setting in the
rsyncd.conf manpage for information on how the chroot setting affects

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update: 2022/08/13

22:14 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

rsync's ability to look up the names of the users and groups and what you
can do about it.

--usermap=STRING, --groupmap=STRING

These options allow you to specify users and groups that should be
mapped to other values by the receiving side. The STRING is one or more
FROM:TO pairs of values separated by commas. Any matching FROM value from
the sender is replaced with a TO value from the receiver. You may specify
usernames or user IDs for the FROM and TO values, and the FROM value may
also be a wild-card string, which will be matched against the sender's names
(wild-cards do NOT match against ID numbers, though see below for why a '*'
matches everything). You may instead specify a range of ID numbers via an
inclusive range: LOW-HIGH. For example:

--usermap=0-99:nobody,wayne:admin, *:normal --groupmap=usr:1l,l:usr

The first match in the list is the one that is used. You should specify
all your user mappings using a single --usermap option, and/or all your
group mappings using a single --groupmap option.

Note that the sender's name for the 0 user and group are not transmitted
to the receiver, so you should either match these values using a 0, or use
the names in effect on the receiving side (typically "root"). ALl other FROM
names match those in use on the sending side. All TO names match those in
use on the receiving side.

Any IDs that do not have a name on the sending side are treated as
having an empty name for the purpose of matching. This allows them to be
matched via a "*" or using an empty name. For instance:

- -usermap=:nobody --groupmap=*:nobody

When the --numeric-ids option is used, the sender does not send any
names, so all the IDs are treated as having an empty name. This means that
you will need to specify numeric FROM values if you want to map these
nameless IDs to different values.

For the --usermap option to have any effect, the -o (--owner) option
must be used (or implied), and the receiver will need to be running as a
super-user (see also the --fake-super option). For the --groupmap option to
have any effect, the -g (--groups) option must be used (or implied), and the
receiver will need to have permissions to set that group.

- -chown=USER: GROUP

This option forces all files to be owned by USER with group GROUP. This
is a simpler interface than using --usermap and --groupmap directly, but it
is implemented using those options internally, so you cannot mix them. If
either the USER or GROUP is empty, no mapping for the omitted user/group
will occur. If GROUP is empty, the trailing colon may be omitted, but if
USER is empty, a leading colon must be supplied.

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 37/49 Page de man de grsync (22 Jun 2014)

If you specify "--chown=foo:bar, this is exactly the same as specifying
"--usermap=*:foo --groupmap=*:bar", only easier.

- -timeout=TIMEOUT

This option allows you to set a maximum I/0 timeout in seconds. If no
data is transferred for the specified time then rsync will exit. The default
is 0, which means no timeout.

--contimeout

This option allows you to set the amount of time that rsync will wait
for its connection to an rsync daemon to succeed. If the timeout is reached,
rsync exits with an error.

--address

By default rsync will bind to the wildcard address when connecting to an
rsync daemon. The --address option allows you to specify a specific IP
address (or hostname) to bind to. See also this option in the --daemon mode
section.

- -port=PORT

This specifies an alternate TCP port number to use rather than the
default of 873. This is only needed if you are using the double-colon (::)
syntax to connect with an rsync daemon (since the URL syntax has a way to
specify the port as a part of the URL). See also this option in the --daemon
mode section.

--sockopts

This option can provide endless fun for people who like to tune their
systems to the utmost degree. You can set all sorts of socket options which
may make transfers faster (or slower!). Read the man page for the
setsockopt() system call for details on some of the options you may be able
to set. By default no special socket options are set. This only affects
direct socket connections to a remote rsync daemon. This option also exists
in the --daemon mode section.

--blocking-io

This tells rsync to use blocking I/0 when launching a remote shell
transport. If the remote shell is either rsh or remsh, rsync defaults to
using blocking I/0, otherwise it defaults to using non-blocking I/0. (Note
that ssh prefers non-blocking I/0.)

- -outbuf=MODE

This sets the output buffering mode. The mode can be None (aka
Unbuffered), Line, or Block (aka Full). You may specify as little as a
single letter for the mode, and use upper or lower case.

The main use of this option is to change Full buffering to Line
buffering when rsync's output is going to a file or pipe.

-1, --itemize-changes
Requests a simple itemized list of the changes that are being made to

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Iia;,;:pdate: 2022/08/13 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

each file, including attribute changes. This is exactly the same as
specifying --out-format='%i %n%L'. If you repeat the option, unchanged files
will also be output, but only if the receiving rsync is at least version
2.6.7 (you can use -vv with older versions of rsync, but that also turns on
the output of other verbose messages).

The "%i" escape has a cryptic output that is 11 letters long. The
general format is like the string YXcstpoguax, where Y is replaced by the
type of update being done, X is replaced by the file-type, and the other
letters represent attributes that may be output if they are being modified.

The update types that replace the Y are as follows:

A < means that a file is being transferred to the remote host
(sent).

A > means that a file is being transferred to the local host
(received).

A c means that a local change/creation is occurring for the item
(such as the creation of a directory or the changing of a symlink, etc.).

A h means that the item is a hard link to another item (requires
--hard-links).

A . means that the item is not being updated (though it might
have attributes that are being modified).

A * means that the rest of the itemized-output area contains a
message (e.g. "deleting").

The file-types that replace the X are: f for a file, a d for a
directory, an L for a symlink, a D for a device, and a S for a special file
(e.g. named sockets and fifos).

The other letters in the string above are the actual letters that will
be output if the associated attribute for the item is being updated or a "."
for no change. Three exceptions to this are: (1) a newly created item
replaces each letter with a "+", (2) an identical item replaces the dots
with spaces, and (3) an unknown attribute replaces each letter with a "?"
(this can happen when talking to an older rsync).

The attribute that is associated with each letter is as follows:

A ¢ means either that a regular file has a different checksum
(requires --checksum) or that a symlink, device, or special file has a
changed value. Note that if you are sending files to an rsync prior to
3.0.1, this change flag will be present only for checksum-differing regular
files.

A s means the size of a regular file is different and will be
updated by the file transfer.

A t means the modification time is different and is being
updated to the sender's value (requires --times). An alternate value of T
means that the modification time will be set to the transfer time, which
happens when a file/symlink/device is updated without --times and when a

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 39/49 Page de man de grsync (22 Jun 2014)

symlink is changed and the receiver can't set its time. (Note: when using an
rsync 3.0.0 client, you might see the s flag combined with t instead of the
proper T flag for this time-setting failure.)

A p means the permissions are different and are being updated to
the sender's value (requires --perms).

An o means the owner is different and is being updated to the
sender's value (requires --owner and super-user privileges).

A g means the group is different and is being updated to the
sender's value (requires --group and the authority to set the group).

The u slot is reserved for future use.

The a means that the ACL information changed.

The x means that the extended attribute information changed.

One other output is possible: when deleting files, the "%i" will output
the string "*deleting" for each item that is being removed (assuming that
you are talking to a recent enough rsync that it logs deletions instead of
outputting them as a verbose message).

--out-format=FORMAT

This allows you to specify exactly what the rsync client outputs to the
user on a per-update basis. The format is a text string containing embedded
single-character escape sequences prefixed with a percent (%) character. A
default format of "%n%L" is assumed if either --info=name or -v is specified
(this tells you just the name of the file and, if the item is a link, where
it points). For a full list of the possible escape characters, see the "log
format" setting in the rsyncd.conf manpage.

Specifying the --out-format option implies the --info=name option, which
will mention each file, dir, etc. that gets updated in a significant way (a
transferred file, a recreated symlink/device, or a touched directory). In
addition, if the itemize-changes escape (%i) is included in the string (e.g.
if the --itemize-changes option was used), the logging of names increases to
mention any item that is changed in any way (as long as the receiving side
is at least 2.6.4). See the --itemize-changes option for a description of
the output of "%i".

Rsync will output the out-format string prior to a file's transfer
unless one of the transfer-statistic escapes is requested, in which case the
logging is done at the end of the file's transfer. When this late logging is
in effect and --progress is also specified, rsync will also output the name
of the file being transferred prior to its progress information (followed,
of course, by the out-format output).

--log-file=FILE

This option causes rsync to log what it is doing to a file. This is
similar to the logging that a daemon does, but can be requested for the
client side and/or the server side of a non-daemon transfer. If specified as
a client option, transfer logging will be enabled with a default format of
"%1i %n%L". See the --log-file-format option if you wish to override this.

Here's a example command that requests the remote side to log what is

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update: 2022/08/13

22:14 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

happening:
rsync -av --remote-option=--log-file=/tmp/rlog src/ dest/

This is very useful if you need to debug why a connection is closing
unexpectedly.

--log-file-format=FORMAT

This allows you to specify exactly what per-update logging is put into
the file specified by the --log-file option (which must also be specified
for this option to have any effect). If you specify an empty string, updated
files will not be mentioned in the log file. For a list of the possible
escape characters, see the "log format" setting in the rsyncd.conf manpage.

The default FORMAT used if --log-file is specified and this option is
not is '%i %n%L'.

--stats

This tells rsync to print a verbose set of statistics on the file
transfer, allowing you to tell how effective rsync's delta-transfer
algorithm is for your data. This option is equivalent to --info=stats2 if
combined with @ or 1 -v options, or --info=stats3 if combined with 2 or more
-v options.

The current statistics are as follows:

Number of files is the count of all "files" (in the generic
sense), which includes directories, symlinks, etc. The total count will be
followed by a list of counts by filetype (if the total is non-zero). For
example: "(reg: 5, dir: 3, link: 2, dev: 1, special: 1)" lists the totals
for regular files, directories, symlinks, devices, and special files. If any
of value is 0, it is completely omitted from the list.

Number of created files is the count of how many "files"
(generic sense) were created (as opposed to updated). The total count will
be followed by a list of counts by filetype (if the total is non-zero).

Number of deleted files is the count of how many "files"
(generic sense) were created (as opposed to updated). The total count will
be followed by a list of counts by filetype (if the total is non-zero). Note
that this line is only output if deletions are in effect, and only if
protocol 31 is being used (the default for rsync 3.1.x).

Number of regular files transferred is the count of normal files
that were updated via rsync's delta-transfer algorithm, which does not
include dirs, symlinks, etc. Note that rsync 3.1.0 added the word "regular"
into this heading.

Total file size is the total sum of all file sizes in the
transfer. This does not count any size for directories or special files, but
does include the size of symlinks.

Total transferred file size is the total sum of all files sizes
for just the transferred files.

Literal data is how much unmatched file-update data we had to

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 41/49 Page de man de grsync (22 Jun 2014)

send to the receiver for it to recreate the updated files.

Matched data is how much data the receiver got locally when
recreating the updated files.

File list size is how big the file-list data was when the sender
sent it to the receiver. This is smaller than the in-memory size for the
file list due to some compressing of duplicated data when rsync sends the
list.

File list generation time is the number of seconds that the
sender spent creating the file list. This requires a modern rsync on the
sending side for this to be present.

File list transfer time is the number of seconds that the sender
spent sending the file list to the receiver.

Total bytes sent is the count of all the bytes that rsync sent
from the client side to the server side.

Total bytes received is the count of all non-message bytes that
rsync received by the client side from the server side. "Non-message" bytes
means that we don't count the bytes for a verbose message that the server
sent to us, which makes the stats more consistent.

-8, --8-bit-output

This tells rsync to leave all high-bit characters unescaped in the
output instead of trying to test them to see if they're valid in the current
locale and escaping the invalid ones. All control characters (but never
tabs) are always escaped, regardless of this option's setting.

The escape idiom that started in 2.6.7 is to output a literal backslash
(\) and a hash (#), followed by exactly 3 octal digits. For example, a
newline would output as "\#012". A literal backslash that is in a filename
is not escaped unless it is followed by a hash and 3 digits (0-9).

-h, --human-readable

Output numbers in a more human-readable format. There are 3 possible
levels: (1) output numbers with a separator between each set of 3 digits
(either a comma or a period, depending on if the decimal point is
represented by a period or a comma); (2) output numbers in units of 1000
(with a character suffix for larger units -- see below); (3) output numbers
in units of 1024.

The default is human-readable level 1. Each -h option increases the
level by one. You can take the level down to 0 (to output numbers as pure
digits) by specifing the --no-human-readable (--no-h) option.

The unit letters that are appended in levels 2 and 3 are: K (kilo), M
(mega), G (giga), or T (tera). For example, a 1234567-byte file would output
as 1.23M in level-2 (assuming that a period is your local decimal point).

Backward compatibility note: versions of rsync prior to 3.1.0 do not
support human-readable level 1, and they default to level 0. Thus,
specifying one or two -h options will behave in a comparable manner in old
and new versions as long as you didn't specify a --no-h option prior to one
or more -h options. See the --list-only option for one difference.

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update: 2022/08/13

22:14 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

--partial

By default, rsync will delete any partially transferred file if the
transfer is interrupted. In some circumstances it is more desirable to keep
partially transferred files. Using the --partial option tells rsync to keep
the partial file which should make a subsequent transfer of the rest of the
file much faster.

--partial-dir=DIR

A better way to keep partial files than the --partial option is to
specify a DIR that will be used to hold the partial data (instead of writing
it out to the destination file). On the next transfer, rsync will use a file
found in this dir as data to speed up the resumption of the transfer and
then delete it after it has served its purpose.

Note that if --whole-file is specified (or implied), any partial-dir
file that is found for a file that is being updated will simply be removed
(since rsync is sending files without using rsync's delta-transfer
algorithm).

Rsync will create the DIR if it is missing (just the last dir -- not the
whole path). This makes it easy to use a relative path (such as "--partial-
dir=.rsync-partial"”) to have rsync create the partial-directory in the
destination file's directory when needed, and then remove it again when the
partial file is deleted.

If the partial-dir value is not an absolute path, rsync will add an
exclude rule at the end of all your existing excludes. This will prevent the
sending of any partial-dir files that may exist on the sending side, and
will also prevent the untimely deletion of partial-dir items on the
receiving side. An example: the above --partial-dir option would add the
equivalent of "-f '-p .rsync-partial/'" at the end of any other filter
rules.

If you are supplying your own exclude rules, you may need to add your
own exclude/hide/protect rule for the partial-dir because (1) the auto-added
rule may be ineffective at the end of your other rules, or (2) you may wish
to override rsync's exclude choice. For instance, if you want to make rsync
clean-up any left-over partial-dirs that may be lying around, you should
specify --delete-after and add a "risk" filter rule, e.g. -f 'R .rsync-
partial/'. (Avoid using --delete-before or --delete-during unless you don't
need rsync to use any of the left-over partial-dir data during the current
run.)

IMPORTANT: the --partial-dir should not be writable by other users or it
is a security risk. E.g. AVOID "/tmp".

You can also set the partial-dir value the RSYNC PARTIAL DIR environment
variable. Setting this in the environment does not force --partial to be
enabled, but rather it affects where partial files go when --partial is
specified. For instance, instead of using --partial-dir=.rsync-tmp along

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 43/49 Page de man de grsync (22 Jun 2014)

with --progress, you could set RSYNC PARTIAL DIR=.rsync-tmp in your
environment and then just use the -P option to turn on the use of the
.rsync-tmp dir for partial transfers. The only times that the --partial
option does not look for this environment value are (1) when --inplace was
specified (since --inplace conflicts with --partial-dir), and (2) when --
delay-updates was specified (see below).

For the purposes of the daemon-config's "refuse options" setting, --
partial-dir does not imply --partial. This is so that a refusal of the --
partial option can be used to disallow the overwriting of destination files
with a partial transfer, while still allowing the safer idiom provided by --
partial-dir.

--delay-updates

This option puts the temporary file from each updated file into a
holding directory until the end of the transfer, at which time all the files
are renamed into place in rapid succession. This attempts to make the
updating of the files a little more atomic. By default the files are placed
into a directory named ".~tmp~" in each file's destination directory, but if
you've specified the --partial-dir option, that directory will be used
instead. See the comments in the --partial-dir section for a discussion of
how this ".~tmp~" dir will be excluded from the transfer, and what you can
do if you want rsync to cleanup old ".~tmp~" dirs that might be lying
around. Conflicts with --inplace and --append.

This option uses more memory on the receiving side (one bit per file
transferred) and also requires enough free disk space on the receiving side
to hold an additional copy of all the updated files. Note also that you
should not use an absolute path to --partial-dir unless (1) there is no
chance of any of the files in the transfer having the same name (since all
the updated files will be put into a single directory if the path is
absolute) and (2) there are no mount points in the hierarchy (since the
delayed updates will fail if they can't be renamed into place).

See also the "atomic-rsync" perl script in the "support" subdir for an
update algorithm that is even more atomic (it uses --link-dest and a
parallel hierarchy of files).

-m, --prune-empty-dirs

This option tells the receiving rsync to get rid of empty directories
from the file-list, including nested directories that have no non-directory
children. This is useful for avoiding the creation of a bunch of useless
directories when the sending rsync is recursively scanning a hierarchy of
files using include/exclude/filter rules.

Note that the use of transfer rules, such as the --min-size option, does
not affect what goes into the file list, and thus does not leave directories
empty, even if none of the files in a directory match the transfer rule.

Because the file-list is actually being pruned, this option also affects
what directories get deleted when a delete is active. However, keep in mind

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update: 2022/08/13

22:14 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

that excluded files and directories can prevent existing items from being
deleted due to an exclude both hiding source files and protecting
destination files. See the perishable filter-rule option for how to avoid
this.

You can prevent the pruning of certain empty directories from the file-
list by using a global "protect" filter. For instance, this option would
ensure that the directory "emptydir" was kept in the file-list:

--filter 'protect emptydir/'

Here's an example that copies all .pdf files in a hierarchy, only
creating the necessary destination directories to hold the .pdf files, and
ensures that any superfluous files and directories in the destination are
removed (note the hide filter of non-directories being used instead of an
exclude):

rsync -avm --del --include='*.pdf' -f 'hide,! */' src/ dest

If you didn't want to remove superfluous destination files, the more
time-honored options of "--include='*/' --exclude='*'" would work fine in
place of the hide-filter (if that is more natural to you).

--progress

This option tells rsync to print information showing the progress of the
transfer. This gives a bored user something to watch. With a modern rsync
this is the same as specifying --info=flist2,name,progress, but any user-
supplied settings for those info flags takes precedence (e.g. "--info=flistO
--progress").

While rsync is transferring a regqular file, it updates a progress line
that looks like this:

782448 63% 110.64kB/s 0:00:04

In this example, the receiver has reconstructed 782448 bytes or 63% of
the sender's file, which is being reconstructed at a rate of 110.64
kilobytes per second, and the transfer will finish in 4 seconds if the
current rate is maintained until the end.

These statistics can be misleading if rsync's delta-transfer algorithm
is in use. For example, if the sender's file consists of the basis file
followed by additional data, the reported rate will probably drop
dramatically when the receiver gets to the literal data, and the transfer
will probably take much longer to finish than the receiver estimated as it
was finishing the matched part of the file.

When the file transfer finishes, rsync replaces the progress line with a
summary line that looks like this:

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 45/49 Page de man de grsync (22 Jun 2014)

1,238,099 100% 146.38kB/s 0:00:08 (xfr#5, to-chk=169/396)

In this example, the file was 1,238,099 bytes long in total, the average
rate of transfer for the whole file was 146.38 kilobytes per second over the
8 seconds that it took to complete, it was the 5th transfer of a regular
file during the current rsync session, and there are 169 more files for the
receiver to check (to see if they are up-to-date or not) remaining out of
the 396 total files in the file-list.

In an incremental recursion scan, rsync won't know the total number of
files in the file-list until it reaches the ends of the scan, but since it
starts to transfer files during the scan, it will display a line with the
text "ir-chk" (for incremental recursion check) instead of "to-chk" until
the point that it knows the full size of the list, at which point it will
switch to using "to-chk". Thus, seeing "ir-chk" lets you know that the total
count of files in the file list is still going to increase (and each time it
does, the count of files left to check will increase by the number of the
files added to the list).

-P

The -P option is equivalent to --partial --progress. Its purpose is to
make it much easier to specify these two options for a long transfer that
may be interrupted.

There is also a --info=progress2 option that outputs statistics based on
the whole transfer, rather than individual files. Use this flag without
outputting a filename (e.g. avoid -v or specify --info=name@ if you want to
see how the transfer is doing without scrolling the screen with a lot of
names. (You don't need to specify the --progress option in order to use --
info=progress2.)

--password-file=FILE

This option allows you to provide a password for accessing an rsync
daemon via a file or via standard input if FILE is -. The file should
contain just the password on the first line (all other lines are ignored).
Rsync will exit with an error if FILE is world readable or if a root-run
rsync command finds a non-root-owned file.

This option does not supply a password to a remote shell transport such
as ssh; to learn how to do that, consult the remote shell's documentation.
When accessing an rsync daemon using a remote shell as the transport, this
option only comes into effect after the remote shell finishes its
authentication (i.e. if you have also specified a password in the daemon's
config file).

--list-only

This option will cause the source files to be listed instead of
transferred. This option is inferred if there is a single source arg and no
destination specified, so its main uses are: (1) to turn a copy command that
includes a destination arg into a file-listing command, or (2) to be able to
specify more than one source arg (note: be sure to include the destination).

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Iia;,;:pdate: 2022/08/13 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

Caution: keep in mind that a source arg with a wild-card is expanded by the
shell into multiple args, so it is never safe to try to list such an arg
without using this option. For example:

rsync -av --list-only foo* dest/

Starting with rsync 3.1.0, the sizes output by --list-only are affected
by the --human-readable option. By default they will contain digit
separators, but higher levels of readability will output the sizes with unit
suffixes. Note also that the column width for the size output has increased
from 11 to 14 characters for all human-readable levels. Use --no-h if you
want just digits in the sizes, and the old column width of 11 characters.

Compatibility note: when requesting a remote listing of files from an
rsync that is version 2.6.3 or older, you may encounter an error if you ask
for a non-recursive listing. This is because a file listing implies the --
dirs option w/o --recursive, and older rsyncs don't have that option. To
avoid this problem, either specify the --no-dirs option (if you don't need
to expand a directory's content), or turn on recursion and exclude the
content of subdirectories: -r --exclude='/*/*"',

- -bwlimit=RATE

This option allows you to specify the maximum transfer rate for the data
sent over the socket, specified in units per second. The RATE value can be
suffixed with a string to indicate a size multiplier, and may be a
fractional value (e.g. "--bwlimit=1.5m"). If no suffix is specified, the
value will be assumed to be in units of 1024 bytes (as if "K" or "KiB" had
been appended). See the --max-size option for a description of all the
available suffixes. A value of zero specifies no limit.

For backward-compatibility reasons, the rate limit will be rounded to
the nearest KiB unit, so no rate smaller than 1024 bytes per second is
possible.

Rsync writes data over the socket in blocks, and this option both limits
the size of the blocks that rsync writes, and tries to keep the average
transfer rate at the requested limit. Some "burstiness" may be seen where
rsync writes out a block of data and then sleeps to bring the average rate
into compliance.

Due to the internal buffering of data, the --progress option may not be
an accurate reflection on how fast the data is being sent. This is because
some files can show up as being rapidly sent when the data is quickly
buffered, while other can show up as very slow when the flushing of the
output buffer occurs. This may be fixed in a future version.

--write-batch=FILE

Record a file that can later be applied to another identical destination
with --read-batch. See the "BATCH MODE" section for details, and also the --
only-write-batch option.

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 47/49 Page de man de grsync (22 Jun 2014)

--only-write-batch=FILE

Works like --write-batch, except that no updates are made on the
destination system when creating the batch. This lets you transport the
changes to the destination system via some other means and then apply the
changes via --read-batch.

Note that you can feel free to write the batch directly to some portable
media: if this media fills to capacity before the end of the transfer, you
can just apply that partial transfer to the destination and repeat the whole
process to get the rest of the changes (as long as you don't mind a
partially updated destination system while the multi-update cycle is
happening).

Also note that you only save bandwidth when pushing changes to a remote
system because this allows the batched data to be diverted from the sender
into the batch file without having to flow over the wire to the receiver
(when pulling, the sender is remote, and thus can't write the batch).

--read-batch=FILE

Apply all of the changes stored in FILE, a file previously generated by
--write-batch. If FILE is -, the batch data will be read from standard
input. See the "BATCH MODE" section for details.

--protocol=NUM

Force an older protocol version to be used. This is useful for creating
a batch file that is compatible with an older version of rsync. For
instance, if rsync 2.6.4 is being used with the --write-batch option, but
rsync 2.6.3 is what will be used to run the --read-batch option, you should
use "--protocol=28" when creating the batch file to force the older protocol
version to be used in the batch file (assuming you can't upgrade the rsync
on the reading system).

--iconv=CONVERT SPEC

Rsync can convert filenames between character sets using this option.
Using a CONVERT SPEC of "." tells rsync to look up the default character-set
via the locale setting. Alternately, you can fully specify what conversion
to do by giving a local and a remote charset separated by a comma in the
order --iconv=LOCAL,REMOTE, e.g. --iconv=utf8,1s088591. This order ensures
that the option will stay the same whether you're pushing or pulling files.
Finally, you can specify either --no-iconv or a CONVERT SPEC of "-" to turn
off any conversion. The default setting of this option is site-specific, and
can also be affected via the RSYNC ICONV environment variable.

For a list of what charset names your local iconv library supports, you
can run "iconv --list".

If you specify the --protect-args option (-s), rsync will translate the
filenames you specify on the command-line that are being sent to the remote

host. See also the --files-from option.

Note that rsync does not do any conversion of names in filter files

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update: 2022/08/13

22:14 logiciel:systeme:fichiers:grsync:man https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

(including include/exclude files). It is up to you to ensure that you're
specifying matching rules that can match on both sides of the transfer. For
instance, you can specify extra include/exclude rules if there are filename
differences on the two sides that need to be accounted for.

When you pass an --iconv option to an rsync daemon that allows it, the
daemon uses the charset specified in its "charset" configuration parameter
regardless of the remote charset you actually pass. Thus, you may feel free
to specify just the local charset for a daemon transfer (e.g. --iconv=utf8).

-4, --ipv4 or -6, --ipv6

Tells rsync to prefer IPv4/IPv6 when creating sockets. This only affects
sockets that rsync has direct control over, such as the outgoing socket when
directly contacting an rsync daemon. See also these options in the --daemon
mode section.

If rsync was complied without support for IPv6e, the --ipv6 option will
have no effect. The --version output will tell you if this is the case.

- -checksum-seed=NUM

Set the checksum seed to the integer NUM. This 4 byte checksum seed is
included in each block and MD4 file checksum calculation (the more modern
MD5 file checksums don't use a seed). By default the checksum seed is
generated by the server and defaults to the current time() . This option 1is
used to set a specific checksum seed, which is useful for applications that
want repeatable block checksums, or in the case where the user wants a more
random checksum seed. Setting NUM to 0 causes rsync to use the default of
time() for checksum seed.

Options du démon

Regles de filtrage

Regles de motifs d'inclusion/Exclusion
Regles de fusion des fichiers

Effacement des listes de regles de filtrage

Ancrage des motifs d'inclusion/exclusion

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 14:24



2026/02/03 14:24 49/49

Page de man de grsync (22 Jun 2014)

Regles par répertoire et effacement
Mode par lot

Liens symboliques

Diagnostics

Valeurs de retour

Variables d'environnement

Voir aussi

 (en) logiciel
e (fr) logiciel

Contributeurs principaux : id.

Basé sur <Titre original de I'article> par <Auteur Original>.

From:

https://nfrappe.fr/doc-0/ - Documentation du Dr Nicolas Frappé

Permanent link:

https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

Last update: 2022/08/13 22:14

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/


https://nfrappe.fr/doc-0/doku.php?id=fr:logiciel:start
https://nfrappe.fr/doc-0/doku.php?id=fr:logiciel:start
https://nfrappe.fr/doc-0/doku.php?id=utilisateurs:id
https://nfrappe.fr/doc-0/
https://nfrappe.fr/doc-0/doku.php?id=logiciel:systeme:fichiers:grsync:man

	Page de man de grsync (22 Jun 2014)
	Nom
	Synopsis
	Description
	Général
	Installation
	Utilisation
	Utilisation avancée
	Connexion à un démon rsync
	Utiliser les caractéristiques de rsync-daemon via une connexion shell distante
	Démarrer un démon rsync pour accepter les connexions
	Ordre de tri du transfert
	Exemples
	Résumé des options
	Options
	Options du démon
	Règles de filtrage
	Règles de motifs d'inclusion/Exclusion
	Règles de fusion des fichiers
	Effacement des listes de règles de filtrage
	Ancrage des motifs d'inclusion/exclusion
	Règles par répertoire et effacement
	Mode par lot
	Liens symboliques
	Diagnostics
	Valeurs de retour
	Variables d'environnement
	Voir aussi


