2026/02/03 04:34 1/9 Outils et techniques simples pour la rétro-ingénierie

Logiciel

Outils et techniques simples pour la rétro-
ingénierie

Dans cette vidéo, nous allons revisiter le vérificateur de licence de la derniere vidéo, vous pouvez
avoir le méme binaire compilé 64 bits depuis GitHub et vous pouvez aussi regarder la derniere vidéo
ou je suis allé plus en détails sur comment casser ce simple programme.$

Je vais maintenant vous montrer des outils simples et des techniques qui existent pour analyser un
programme comme notre vérificateur de licence.

Cela devrait vous montrer qu'il y a un grand nombre de solutions pour résoudre ce probleme.
La commande file est tres utile pour connaitre quels types de fichiers vous avez.

Donc file, sur notre binaire dit que c'est un ELF 64-bits exécutable pour Linux. Vous pouvez aussi faire
file * pour avoir les informations sur tous les fichiers de votre dossier. Et nous avons aussi trouvé le
code source C.

Donc cela (file) est tres utile.

Ouvrons le programme dans un éditeur de texte comme Vim. Comme vous pouvez le voir, c'est tres
bizarre.

J'ai introduit la notion
Sous-titres

4 00:00:21,020 -> 00:00:25,490 Je vais maintenant vous montrez des outils simples et des
techniques qui existent pour analyser un programme

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/


https://nfrappe.fr/doc-0/doku.php?id=tag:logiciel&do=showtag&tag=Logiciel
https://www.youtube-nocookie.com/embed/3NTXFUxcKPc
https://www.youtube-nocookie.com/embed/3NTXFUxcKPc

Last update:

2022/08/13 21:57 logiciel:programmation:reverseing:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:reverseing:start

500:00:25,490 -> 00:00:30,910 comme notre vérificateur de licence. Cela devrait vous montrez qu'il
y a un grand nombre de

6 00:00:30,910 -> 00:00:33,629 solutions pour résoudre ce probleme.

7 00:00:33,629 -> 00:00:39,079 La commande 'file' est tres utile pour connaitre quels types de
fichiers vous avez. Donc 'file’, sur notre

8 00:00:39,079 -> 00:00:45,020 binaire dit que c'est un ELF 64-bit exécutable pour Linux. Vous
pouvez aussi faire un 'file *' pour

9 00:00:45,020 -> 00:00:51,260 avoir les informations sur tout les fichiers de votre dossier. Et nous
avons aussi trouvez le code source C.

10 00:00:51,260 -> 00:00:53,450 Donc cela ('file') est tres utile

11 00:00:53,450 -> 00:00:59,680 Ouvrons le programme dans un éditeur de texte comme Vim.
Comme vous pouvez le voir, c'est tres bizarre.

12 00:00:59,680 -> 00:01:05,259 J'ai introduit la notion d'ASCIl auparavant, donc vous savez que
chaque caractére a un nombre assigné

13 00:01:05,259 -> 00:01:09,290 Mais il y a des nombres qu'y n'ont pas de caractére affichable. Si
vous regardez

14 00:01:09,290 -> 00:01:16,380 le 'man' de I’ASCII (‘man ascii'), vous pouvez voir que par exemple,
les valeurs de 0 a 1F en hexa

15 00:01:16,380 -> 00:01:23,540 ne sont pas des caracteres normaux. Et I'ascii est aussi défini entre
0 et 127 (7F en héxa). Mais nos ordinateurs

16 00:01:23,540 -> 00:01:31,200 fonctionnent avec des octets, donc 8 bits, ce nombre peut donc
aller de 0 a 255, et I'ASCII n'en utilise que la moitié

17 00:01:31,200 -> 00:01:36,939 Donc toutes ces valeurs bleues bizarres font parti de ces nombres
qui non pas de

18 00:01:36,939 -> 00:01:43,470 caracteres affichable assigné. Vous pouvez aussi faire un hexdump
du fichier, pour avoir les valeurs exactes.

19 00:01:43,470 -> 00:01:49,830 'hexdump -C license_1' et vous pouvez voir qu'il y a beaucoup de 0
dans le fichier. hexdump les affiche avec des .

20 00:01:49,830 -> 00:01:55,380 mais Vim les afficher avec des trucs bleus. Mais quand vous
regardez bien, ily a

21 00:01:55,380 -> 00:02:00,380 quelques chaines intéressante la-dedans . Par exemple, au tout
début “ELF”,

22 00:02:00,380 -> 00:02:06,170 qui est une 'valeur magique', qui indique que ce fichier est un
exécutable.

23 00:02:06,170 -> 00:02:11,038 Vous pouvez aussi voir des chaines pour des librairies comme libc,

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 04:34



2026/02/03 04:34 3/9 Outils et techniques simples pour la rétro-ingénierie

qui défini des fonctions comme

24 00:02:11,038 -> 00:02:16,540 printf ou strcmp. Et on peut aussi voir des chaines que I'on connait,
les messages :

25 00:02:16,540 -> 00:02:21,250 “Checking License”, “Access Granted”, “WRONG!"” et “Usage”
26 00:02:21,250 -> 00:02:28,099 et aussi la chaine “AAAA-ZION-42-0OK". *hmmhmbh... in english*

27 00:02:28,099 -> 00:02:32,170 Vous vous souvenez de la derniere vidéo ou il y avait une
comparaison de chaine dedans ?

28 00:02:32,170 -> 00:02:40,040 Peut-étre que la clé que I'on rentre est comparée a celle-la ?
Essayons la! Acces Accordé,

29 00:02:40,040 -> 00:02:42,910 la clé de ce programme était la dedans depuis le début.

30 00:02:42,910 -> 00:02:48,370 Il y a un outil tres bien appelé 'strings' qui fait ce que I'on vient
juste de faire, mais mieux

31 00:02:48,370 -> 00:02:53,849 Il va scanner un fichier et afficher toutes les séquences de
caracteres affichables avec une certaine longueur.

32 00:02:53,849 -> 00:03:01,770 Essayons donc avec 'strings license_1'. Et voila nos chaines.

33 00:03:01,770 -> 00:03:07,540 La derniere fois, nous avons utilisé gdb pour lire et déboguer le
fichier. Cette fois

34 00:03:07,540 -> 00:03:13,790 nous allons juste utiliser 'objdump' pour le désassemblage.
‘objdump -d license_1".

3500:03:13,790 -> 00:03:18,640 Vous remarquerez que ce fichier a beaucoup plus de code que juste
la focntion main. C'est a cause du compilateur (gcc) qui

36 00:03:18,640 -> 00:03:23,599 met un peut plus de trucs dans le fichier binaire. En effet, les
ordinateurs sont un peut plus complexe que ce qu'ils

37 00:03:23,599 -> 00:03:27,709 semblent étre au premier abord. Mais tout ca est juste des choses
basiques que vous trouverez

38 00:03:27,709 -> 00:03:34,050 dans n'importe quel fichier compilé par gcc. Et la plupart du temps,
seul les fonctions comme le main,

39 00:03:34,050 -> 00:03:37,810 crée par l'utilisateur sont utiles. objdump peut étre utilisé pour
avoir beaucoup plus

40 00:03:37,810 -> 00:03:42,810 d'informations sur ce programme. Affichons tout avec ‘objdump -c
license_ 1’ et mettons un pipe

41 00:03:42,810 -> 00:03:48,950 vers less pour y voir plus clairement. Donc la premiere chose qu'il
dit est que ce fichier est un ELF

42 00:03:48,950 -> 00:03:55,560 pour l'architecture x86-64. La pile (stack) n'est pas exécutable, ce
qui est indiqué par I'absence du 'x'

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update:

2022/08/13 21:57 logiciel:programmation:reverseing:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:reverseing:start

43 00:03:55,560 -> 00:03:59,629 ce qui sera intéressant quand nous regarderons les buffer overflows
classiques.

44 00:03:59,629 -> 00:04:05,330 Et les dernieres informations intéressante (dans cette situation)
sont dans les sections. Ici nous pouvons voir que

45 00:04:05,330 -> 00:04:11,120 des données vont finir dans la mémoire. Les sections intéressantes
pour nous sont .text qui contient

46 00:04:11,120 -> 00:04:19,810 notre code et commence a I'adresse 4004d0 et a une taille de
le2(hex), si vous regardez ou était la fonction

47 00:04:19,810 -> 00:04:23,830 main, vous remarquerez que c'était la.

48 00:04:23,830 -> 00:04:29,569 L'autre section est .rodata, ou sont stocké nos données seulement
lisibles

49 00:04:29,569 -> 00:04:35,839 Donc nos chaines peuvent étre trouvées ici. Si vous ouvrez gdb et
mettez un break sur le strcmp,

50 00:04:35,839 -> 00:04:43,710 vous pouvez vérifier les registres. Et I'un deux aura une adresse
venant de .rodata

51 00:04:43,710 -> 00:04:48,699 Vous pouvez afficher cette adresse avec 'x/s' et voila notre clé est
encore la.

52 00:04:48,699 -> 00:04:54,520 Passons a un autre outil, il est appelé strace et il peut tracer les
appels systeme et les signaux.

53 00:04:54,520 -> 00:05:01,479 Quand je vous ai introduit la programmation en C, nous avons
utilisé printf pour afficher du texte.

54 00:05:01,479 -> 00:05:07,020 C'était une fonction que I'on avait rajouter a notre programme
depuis la librairie libc. Mais printf est juste

55 00:05:07,020 -> 00:05:12,770 un 'wrapper',qui appelle une fonction que Linux nous procure.

56 00:05:12,770 -> 00:05:18,339 Linux nous offre différentes fonctions appelés syscalls. Vous pouvez
en apprendre plus dans le man.

57 00:05:18,339 -> 00:05:24,349 Une de ces fonctions est 'write'. Et write peut étre utilisé pour écrire
du texte sur la sortie standard ,

58 00:05:24,349 -> 00:05:30,419 que nous pouvons lire dans la console. Exécutons donc notre
programme avec strace.

59 00:05:30,419 -> 00:05:37,479 La premiere ligne est execve, qui est une fonction qui dit au kernel
Linux (le coeur) d'exécuter le programme

60 00:05:37,479 -> 00:05:43,809 license_1. Apres ¢a, beaucoup de magie opere que I'on allons
ignorer pour l'instant.

61 00:05:43,809 -> 00:05:49,550 Et quelque part dans la descente, le code que j'ai écrit commence.

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 04:34



2026/02/03 04:34 5/9 Outils et techniques simples pour la rétro-ingénierie

62 00:05:49,550 -> 00:05:57,869 Et la, vous pouvez voir I'appel de write qui est exécuté avec le
texte que I'on connait.

63 00:05:57,869 -> 00:05:59,039 Intéressant non ?

64 00:05:59,039 -> 00:06:06,069 Il y a un autre outil cool appelé 'ltrace'. Similaire a strace, il trace
(dans le sens de suivre) des fonctions.

65 00:06:06,069 -> 00:06:11,349 Mais cette fois, il suit les fonctions des librairies, comme printf ou
strcmp, qui viennent de libc.

66 00:06:11,349 -> 00:06:17,089 Donc Itrace nous montre leurs occurences. D'abord vous pouvez
voir le printf, et ensuite le strcmp

67 00:06:17,089 -> 00:06:22,580 Et cela montre les chaines que cela compare, donc ¢a nous montre
sympathiquement

68 00:06:22,580 -> 00:06:25,969 comment le vérificateur de licence marche .

69 00:06:25,969 -> 00:06:31,699 Utilisons ce fichier avec une interface graphique utilisateur. Je vais
utilisé hopper sur mac. Comme vous le savez slrement

70 00:06:31,699 -> 00:06:38,589 IDAPro est tres cher. Mais hopper est une bonne alternative qui est
abordable

71 00:06:38,589 -> 00:06:43,860 Hopper reconnait que c'est un exécutable ELF et peut I'analyser
automatiquement pour nous.

72 00:06:43,860 -> 00:06:50,119 Cela place notre curseur sur la fonction appelée start et pas le
main. Comme nous l'avons vu avec

73 00:06:50,119 -> 00:06:56,179 objdump auparavant, il y a quelques fonctions crée par le
compilateur et c'est la que commence réellement le programme

74 00:06:56,179 -> 00:07:01,029 Mais ce que font ces fonctions n'est pas vraiment important pour
I'instant.

75 00:07:01,029 -> 00:07:05,919 Nous sommes seulement intéressé par le main. Donc nous allons le
chercher

76 00:07:05,919 -> 00:07:11,339 dans la liste des étiquettes. Et voila notre fonction main, comme
avec gdb

77 00:07:11,339 -> 00:07:17,159 C'est juste un peu plus coloré et Hopper peut aussi nous montrez
ou les branches vont.

78 00:07:17,159 -> 00:07:22,669 A la fin de la derniere vidéo, je vous avait déja montrez le graphe
de contrdle du flux auquel

79 00:07:22,669 -> 00:07:28,969 vous pouvez accéder en haut a droite. Et une fonctionnalité cool de
Hopper est son dé-compilateur.

80 00:07:28,969 -> 00:07:36,279 Décompiler pourrait paraitre comme le compilateur inversé pour
retrouver le code original mais non.

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update:

2022/08/13 21:57 logiciel:programmation:reverseing:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:reverseing:start

81 00:07:36,279 -> 00:07:42,240 En effet, le compilateur change et optimise des choses et on ne
peut pas simplement l'inversé. Mais Hopper

82 00:07:42,240 -> 00:07:47,689 peut deviner comment cela avait I'air. Parfois il fait des erreurs,
mais la plupart du temps

83 00:07:47,689 -> 00:07:51,849 c'est plutdt bien. Donc cela nous montre ici comment on vérifie si
nous avons passer une clé en argument

84 00:07:51,849 -> 00:07:56,999 puis fait la comparaison et afficher soit “Access Granted” ou
“WRONG!”

85 00:07:56,999 -> 00:08:02,319 Donc c'est plutoét sympa. A droite vous trouverez aussi un bouton
pour afficher toutes les chaines

86 00:08:02,319 -> 00:08:08,219 Et comme vous pouvez le voir, cela a aussi trouvé la clé. Quand
vous cliguez dessus,

87 00:08:08,219 -> 00:08:13,419 cela va sauter a l'adresse a laquelle la clé est stockée. XREF
indique un référencement croisé,

88 00:08:13,419 -> 00:08:18,309 ce qui signifie que cette adresse est référencée quelque part. Nous
pouvons suivre ce XREF, et nous pouvons voir

89 00:08:18,309 -> 00:08:24,339 que c'est le code assembleur, ou la clé est déplacé dans le dossier
esi.

90 00:08:24,339 -> 00:08:28,689 Cela prépare les parametres de la fonction strcmp.

91 00:08:28,689 -> 00:08:34,360 Quelques enfants ont peut étre I'idée que les utilisateurs Mac sont
nuls. Donc pour leur faire plaisir, nous allons installer radare2

92 00:08:34,360 -> 00:08:39,809 en clonant le dépot depuis git. Vous devrez peut-étre installer git
avec 'sudo apt-get install git'.

93 00:08:39,809 -> 00:08:50,269 Pour installer radare, run 'sys/install.sh' et attendez.

94 00:08:50,269 -> 00:08:57,009 Quand c'est installé, vous pouvez allez sur le fichier license_1 et
I'ouvrir avec 'r2 license_1'

95 00:08:57,009 -> 00:09:02,120 Vous vous souvenez peut étre de I'adresse du objdump auparavant,
c'est le début de la partie texte

96 00:09:02,120 -> 00:09:10,019 qui contient notre code. Lancez d'abord 'aaa' pour analyser
automatiqguement une fonction autoname.

97 00:09:10,019 -> 00:09:14,620 Puis utilisez 'afl' pour afficher toutes les fonctions que radare a
trouvé

98 00:09:14,620 -> 00:09:19,209 Chaque caractéres dans radare veut dire quelque chose. Et avec ?
vous avez toujours l'information sur

99 00:09:19,209 -> 00:09:26,329 les caractéres que vous pouvez utilisés. Donc 'a' fait des analyses

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 04:34



2026/02/03 04:34 7/9 Outils et techniques simples pour la rétro-ingénierie

de code. 'a?' nous montre que Nous pouvons

100 00:09:26,329 -> 00:09:32,889 lui coller 'f' pour analyser des fonctions. Et 'afl' liste ces fonctions.
C'est logique non ?

101 00:09:32,889 -> 00:09:37,069 Ok donc afl nous montre qu'il a trouvé une fonction main.

102 00:09:37,069 -> 00:09:43,810 Changeons notre emplacement pour chercher celui de la fonction
main.

103 00:09:43,810 -> 00:09:50,319 Vous pouvez aussi utiliser tab pour compléter ici. Maintenant que
la localisation a changer, avec 'pdf’,

104 00:09:50,319 -> 00:09:55,110 on peut afficher le code désassemblé de cette fonction

105 00:09:55,110 -> 00:10:00,250 Comme Hopper, cela nous montre le code avec de belles fleches.
Et cela a crée des commentaires

106 00:10:00,250 -> 00:10:03,889 pour les chaines qui sont référencées

107 00:10:03,889 -> 00:10:09,480 Vous pouvez aussi utiliser 'VV' pour entrer dans le mode visuel.
cela montre un Graphe de contréle de la fonction

108 00:10:09,480 -> 00:10:15,050 Vous pouvez vous déplacez avec les fleches de votre clavier. Les
bords bleus indiquent que nous sélectionnons actuellement cette boite.

109 00:10:15,050 -> 00:10:20,930 Avec Tab et Shift+Tab, vous pouvez sélectionner d'autres blocs.
Quand vous avez sélectionné un bloc,

110 00:10:20,930 -> 00:10:27,470 vous pouvez les déplacer avec Shift et h,j,k ou I.

111 00:10:27,470 -> 00:10:31,689 Avec 'p' vous pouvez changer de représentations. Par exemple
avec ou sans les adresses au début.

112 00:10:31,689 -> 00:10:37,420 Ou alors cette vue minimaliste, qui est utile si vous avez de tres
grosses fonctions.

113 00:10:37,420 -> 00:10:43,209 Et avec ? vous pouvez afficher une aide. Cette aide vous indique
qgue 'R' est le raccourci

114 00:10:43,209 -> 00:10:49,990 le plus important que vous devez connaitre avec radare.Donc
appuyez sur Shift+R et appréciez le moment.

115 00:10:49,990 -> 00:10:55,759 Vous pouvez aussi utiliser radare2 comme gdb pour déboguer ce
programme. Pour ce faire, lancez

116 00:10:55,759 -> 00:10:59,610 radare avec -d. Cherchez la fonction main, analysez le tout

117 00:10:59,610 -> 00:11:05,180 avec 'aaa’ et afficher le code désassemblé avec 'pdf'. Maintenant
placez un breakpoint au début

118 00:11:05,180 -> 00:11:12,379 avec 'db' et allez dans Visual View avec 'VV'. Comme avec Vim,
vVous pouvez entrez en mode commande avec "'

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/



Last update:

2022/08/13 21:57 logiciel:programmation:reverseing:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:reverseing:start

119 00:11:12,379 -> 00:11:19,079 ou vous pouvez taper ":dc' pour lancer le programme.

120 00:11:19,079 -> 00:11:25,649 Nous arrivons donc sur le breakpoint 1 et si vous regardez bien,
vous pouvez voir rip dans la premiere boite. Cela nous montre

121 00:11:25,649 -> 00:11:31,149 ou l'instruction pointe. Avec 's' vous pouvez passer des
instructions. Mais nous

122 00:11:31,149 -> 00:11:37,209 devrions utiliser 'S', autrement nous suivront des instructions que
nous ne voulons pas. Donc Shift+S pour aller plus loin

123 00:11:37,209 -> 00:11:40,610 Oups, nous n'avons pas mis de clé pour la licence.
124 00:11:40,610 -> 00:11:42,600 Mais vous avez compris le principe

125 00:11:42,600 -> 00:11:47,360 J'espere que cela vous a aider a apprendre de nouveaux outils et
techniques. Et rappelez vous

126 00:11:47,360 -> 00:11:52,879 qu'il n'y a pas d'outils meilleur qu'un autre. Ils ont tous des
fonctionnalités et des représentations des données différentes

127 00:11:52,879 -> 00:11:58,199 Il serait logique de tous les maitriser. Sauf radare. Certains disent
que c'est le meilleur

128 00:11:58,199 -> 00:11:59,950 mais personne ne maitrise vraiment radare.

Introduction
Pré-requis
Installation
Configuration
Utilisation
Désinstallation

Voir aussi

e (fr) https://www.youtube.com/watch?v=3NTXFUxcKPc

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 04:34


https://www.youtube.com/watch?v=3NTXFUxcKPc

2026/02/03 04:34 9/9 Outils et techniques simples pour la rétro-ingénierie

Basé sur « Article » par Auteur.

From:
https://nfrappe.fr/doc-0/ - Documentation du Dr Nicolas Frappé

Permanent link:
https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:reverseing:start

Last update: 2022/08/13 21:57

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/


https://nfrappe.fr/doc-0/
https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:reverseing:start

	Outils et techniques simples pour la rétro-ingénierie
	Introduction
	Pré-requis
	Installation
	Configuration
	Utilisation
	Désinstallation
	Voir aussi


