2026/02/03 01:26 1/16 Noweb : documentation automatique de programme (traduction du man)

Logiciel

Noweb : documentation automatique de
programme (traduction du man)

Voir les traductions de :

¢ A One-Page Guide to Using noweb with LATEX : Utiliser NoWeb avec LATEX : guide d'utilisation
en une page

e The noweb Hacker’s Guide : Le Guide du Hacker Noweb (The noweb Hacker’s Guide)

Man Noweb

literate programing NOWEB(1) General Commands Manual NOWEB(1)

NAME

noweb - a simple literate-programming tool
SYNOPSIS

noweb [-t] [-o0] [-Lformat] [-markup parser] [file]
DESCRIPTION

Noweb is a literate-programming tool like FunnelWEB or nuweb, only sim-
pler. A noweb file contains program source code interleaved with docu-
mentation. When noweb is invoked, it writes the program source code to
the output files mentioned in the noweb file, and it writes a TeX file
for typeset documentation.

The noweb(1l) command is for people who don't like reading man pages or
who are switching from nuweb. To get the most out of noweb, use notan-
gle(1l) and noweave(l) instead.

FORMAT OF NOWEB FILES

A noweb file is a sequence of chunks, which may appear in any order. A
chunk may contain code or documentation. Documentation chunks begin
with a line that starts with an at sign (@) followed by a space or new-
line. They have no names. Code chunks begin with

<<chunk name>>=

on a line by itself. The double left angle bracket (<<) must be in the
first column. Chunks are terminated by the beginning of another chunk,
or by end of file. If the first line in the file does not mark the
beginning of a chunk, it is assumed to be the first line of a documen-

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

https://nfrappe.fr/doc-0/doku.php?id=tag:logiciel&do=showtag&tag=Logiciel
https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:noweb-1page:start
https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:noweb-1page:start
https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:hacker:start

Last update: 2022/08/13

21:57

logiciel:programmation:noweb:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:start

tation chunk.

Documentation chunks contain text that is copied verbatim to the TeX
file (except for quoted code). noweb works with LaTeX; the first docu-
mentation chunk must contain a LaTeX \documentclass command, it must
contain \usepackage{noweb} in the preamble, and finally it must also
contain a LaTeX \begin{document} command.

Code chunks contain program source code and references to other code
chunks. Several code chunks may have the same name; noweb concatenates
their definitions to produce a single chunk, just as other literate-
programming tools do. noweb looks for chunks that are defined but not
used in the source file. If the name of such a chunk contains no spa-
ces, the chunk is an "~“output file;'' noweb expands it and writes the
result onto the file of the same name. A code-chunk definition is like
a macro definition; it contains references to other chunks, which are
themselves expanded, and so on. noweb's output is readable; it pre-
serves the indentation of expanded chunks with respect to the chunks in
which they appear.

If a star (*) is appended to the name of an output file, noweb includes
line-number information as specified by the -Lformat option (or for C
if no -Lformat option is given). The name itself may not contain shell
metacharacters.

Code may be quoted within documentation chunks by placing double square
brackets ([[...]]) around it. These double square brackets are used to
give the code special typographic treatment in the TeX file. If quoted
code ends with three or more square brackets, noweb chooses the right-
most pair, so that, for example, [[a[i]]] is parsed correctly.

In code, noweb treats unpaired double left or right angle brackets as
literal << and >>. To force any such brackets, even paired brackets or
brackets in documentation, to be treated as literal, use a preceding at
sign (e.g. @<<).

OPTIONS

t Suppress generation of a TeX file.

0 Suppress generation of output files.

Lformat Use format to format line-number information for starred output files. (If the option is
omitted, a format suitable for C is used.) format is as defined by notangle(1);

markup parser Use parser to parse the input file. Enables use of noweb tools on files in other formats;
for example, the numarkup parser understands nuweb(1) format. See nowebfilters(7) for more
information. For experts only.

BUGS

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 01:26

2026/02/03 01:26 3/16 Noweb : documentation automatique de programme (traduction du man)

Ignoring wunused chunks whose names contain spaces sometimes causes
problems, especially in the case when a chunk has multiple definitions
and one 1is misspelled; the misspelled definition will be silently
ignored. noroots(l) can be used as a sanity checker to catch this sort
of mistake.

noweb is intended for users who don't want the power or the complexity
of command-line options. More sophisticated users should avoid noweb
and use noweave and notangle instead. If the design were better, we
could all use the same commands.

noweb requires the new version of awk. DEC nawk has a bug in that that
causes problems with braces in TeX output. GNU gawk is reported to
work.

The default LaTeX pagestyles don't set the width of the boxes contain-
ing headers and footers. Since noweb code paragraphs are extra wide,
this LaTeX bug sometimes results in extra-wide headers and footers.
The remedy 1is to redefine the relevant ps@* commands; ps@noweb in
noweb.sty can be used as an example.

SEE ALSO
notangle(1l), noweave(l), noroots(l), nountangle(l), nowebstyle(7),
nowebfilters(7), nuweb2noweb(1)
Norman Ramsey, Literate programming simplified, IEEE Software

11(5):97-105, September 1994.

VERSION

This man page is from noweb version 2.11b.

AUTHOR

Norman Ramsey, Harvard University. Internet address nr@eecs.har-
vard.edu.
Noweb home page at http://www.eecs.harvard.edu/~nr/noweb.

local 3/28/2001 NOWEB (1)

Introduction

Programmation Lettrée en utilisant noweb (Andrew L. Johnson and Brad C. Johnson, December 19,

2000)

Changeons notre méthode traditionnelle de construction de programmes : Au lieu d'indiquer a un
ordinateur que faire, focalisons-nous sur le fait d'expliquer a un humain ce que nous voulons que
I'ordinateur fasse. (Donald E. Knuth, 1984).

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

Last update: 2022/08/13

21:57 logiciel:programmation:noweb:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:start

C'est le but essentiel de la programmation lettrée (LP en raccourci)

Un tel environnement inverse la notion d'inclusion de la documentation, sous forme de commentaires,
dans le code, en celle ou le code est imbriqué dans la description d'un programme.

Ainsi, la programmation lettrée facilite le développement et la présentation de programmes
informatiques qui suivent de pres le cheminement du probléeme a la solution.

D'ou des programmes plus faciles a déboguer et a maintenir.

En programmation lettrée, on spécifie la description et le code du programme dans un dossier source
unique, dans l'ordre le plus compréhensible par un humain.

Le code de programme peut étre extrait et rassemblé sous forme intelligible pour le compilateur ou
I'interprete par un processus appelé tangling.

La documentation est produite par un processus appelé weaving qui combine la description et le
code sous une forme affichable ou imprimable (le plus souvent par TEX ou le LATEX).

Beaucoup d'outils ont été créés pour la programmation lettrée, la plupart fondés, directement ou
conceptuellement, sur le systeme de WEB créé par D. E. Knuth [cf. 1984. Literate Programming. The
Computer Journal (27)2:97-111]. Cet article présente noweb de Normand Ramsey - un instrument de
programmation lettrée simple a utiliser, extensible et indépendant du langage de programmation.

Apercu du Systeme noweb

Pour écrire un programme lettré pour noweb, créez un fichier texte simple, traditionnellement
d'extension .nw) dans lequel vous fournissez toute la documentation technique des différentes
parties du programme, avec le code source réel de chaque partie du programme.

Ce fichier (voir Listing 1), que nous appellerons le fichier source nw, est alors traité par noweave
pour créer la documentation sous une forme lisible (la version formatée du programme, voir Figure 1),
ou traité par notangle pour extraire les morceaux de code et les rassembler dans leur bon ordre pour
le compilateur ou l'interprete (la version exécutable du programme, voir listing 2).

Ces deux processus ne sont pas des programmes simples mais un ensemble de filtres a travers
lesquels est filtré le fichier source nw.

C'est ce systeme de pipe qui rend noweb flexible et extensible car les pipes peuvent étre modifiés et
de nouveaux filtres peuvent étre créés et insérés dans les pipes pour changer le processus de noweb.

Listing 1 : fichier source nw

\documentclass[1lOpt]{article}

\usepackage{noweb}

\noweboptions{smallcode, longchunks}

\begin{document}

\pagestyle{noweb}

@ \paragraph{Introduction}

This is [[autodefs.perl]]\footnote{Copyright 1997, Andrew L.
Johnson and Brad C. Johnson, All rights reserved.},

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 01:26

2026/02/03 01:26 5/16 Noweb : documentation automatique de programme (traduction du man)

a Perl script to be used as an [[autodefs]] filter
in the [[noweb]] pipeline to identify and index
some common Perl definitions. Since this
file is also meant to show off some of the
features of [[noweb]] it is purposely verbose
and contorted.
Perl does not require the formal declaration or typing of
variables which makes it difficult to
differentiate between declarations and usages of
variables. We may however find definitions of [[sub]]’s and
[[package]]’'s with little difficulty and that is the purpose of
this module. Before we begin we need to know
some facts about [[noweb]]’s pipeline structure.\footnote{Noweb’s
pipeline structure is described in the \textit{Noweb Hackers
Guide} which is included in the [[noweb]] distribution.}
Actual code in the pipeline lie between lines
of the form [[@begin code]] and [[@end code]].
In Perl these are easily recognized by the following regular
expressions.
<<Global variables>>=
$begin code pat = ""\@begin code";
$end code pat
= "~\@end code";
@ %def $begin code pat $end code pat
2@ Within a code block there are many types of lines.
that contain actual code are prefixed by [[@text]].
<<Global variables>>=
$code line pat = ""\@text";
@ %def $code line pat
Ones
@ If, on a code line inside a code block, we find something that
should be added to the ‘‘Defines’’ block at the end of the code
chunk and appear in the index, then we need to add a line to the
pipeline of the form ‘‘[[@index defn <ident>]]'’'.
<<Global variables>>=
$index prefix = "\@index defn";
@ %def $index prefix
@ \paragraph{autodefs.perl}
Our actual Perl script has the following simple shape:
<<autodefs.perl>>=
#!/usr/bin/perl
<<Global variables>>
<<[[process code chunk]] subroutine>>
while (<>) {

print $;

if (/$begin code pat/o) {

process code chunk;

}

}

@
\paragraph{Processing the code chunk}

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

;a;;;:pdate: 2022/08/13 logiciel:programmation:noweb:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:start

To process the code chunk we need to perform a few housekeeping
tasks. First, we only want to consider lines that begin with
[[$code line pat]] and second, we want to stop when we find a line
that matches [[$end code pat]]. The following loop will suffice
for this purpose.
<<[[process code chunk]] subroutine>>=
sub process code chunk {
while (($ = <>) && !/$end code pat/o) {
print $;
if(/$code line pat/o) {
<<Find and print any definitions>>
}
}
print $; # make sure we print the ‘‘@end code’’ line
}
@
@ When checking for definitions we first strip off
any comments since [[sub]] or [[package]] may
also occur in a comment. We then build
a list [[@def list]] which contain all of the
3[[sub]] and [[package]] definitions on the line
and print out an [[@index defn]] line for

each.
<<Find and print any definitions>>=
$_ =~ s/#.*//0;

@def list = (/sub\s(\w+)/go, /package\s(\w+)/go);
foreach $item (@def list) {

print "$index prefix $item\n";
}
@
\paragraph{Defined Chunks}\par\noindent
\nowebchunks
\paragraph{Index}\par\noindent
\nowebindex
@
\end{document}

Listing 2: version exécutable

#!/usr/bin/perl
$begin code pat = ""~\@begin code";
$end code pat
= "~\@end code";
$code line pat = ""\@text";
$index prefix = "\@index defn";
sub process code chunk {
while (($ = <>) && !/%$end code pat/o) {

print 5_;
if(/$code line pat/o) {
$_ =~ s/#.*//o;

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 01:26

2026/02/03 01:26 7/16 Noweb : documentation automatique de programme (traduction du man)

@def list = (/sub\s(\w+)/go, /package\s(\w+)/go);
foreach $item (@def list) {
print "$index prefix $item\n";

}
}
}
print $; # make sure we print the ‘‘@end code’’ line
}
while (<>) {
print $;
if (/$begin code pat/o) {
process code chunk;
}
}

Comme la plupart des outils de programmation lettrée, noweb compte se base sur TEX ou LATEX pour
se référer ou mettre en forme la documentation (bien qu'il puisse aussi produire un fichier). Il n'est
cependant pas nécessaire d'étre un guru en LATEX pour produire de bons résultats car le plus dur du
travail est fait automatiquement par noweave.

La documentation mise en forme

Figure 1 le texte mis en forme

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

Last update: 2022/08/13

21:57 logiciel:programmation:noweb:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:start

Introduction This is autodefs.perl!, a Perl script to be used as
an autodefs filter in the noweb pipeline to identify and index some
common Perl definitions. Since this file is also meant to show off
some of the features of noweb it is purposely verbose and contorted.

Perl does not require the formal declaration or typing of variables
which makes it difficult to differentiate between declarations and
usages of variables. We may however find definitions of sub’s and
package’s with little difficulty and that is the purpose of this module.
Before we begin we need to know some facts about noweb’s pipeline
structure.? Actual code in the pipeline lie between lines of the form
@begin code and @end code. In Perl these are easily recognized by
the following regular expressions.

5a (Global variables 5a)= (6b) 5br
$begin_code_pat = "“\@begin code";
$end_code_pat = ""“\@end code";

Defines:

$begin code_pat, used in chunk 6b.
$end_code_pat, used in chunk Gc.

Within a code block there are many types of lines. Ones that contain
actual code are prefixed by @text.

5h (Global variables 5a)+= (6b) <5a 6Gan
$code_line_pat = ""\@text";
Defines:

$code_line_pat, used in chunk 6c.

LCopyright 1997, Andrew L. Johnson and Brad C. Johnson, All rights reserved.
2Noweb's pipeline structure is described in the Noweb Hackers Guide which is included in
the noweb distribution.

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 01:26

2026/02/03 01:26 9/16 Noweb : documentation automatique de programme (traduction du man)

If, on a code line inside a code block, we find something that should
be added to the “Defines” block at the end of the code chunk and
appear in the index, then we need to add a line to the pipeline of
the form “@index defn <ident>".

6a (Global variables 5a)+= (6b) <5b
$index_prefix = "\@index defn";

Defines:
$index prefix, used in chunk 7.

autodefs.perl Our actual Perl script has the following simple shape:

6h (autodefs.perl 6b)=
#!/usr/bin/perl
(Global variables 5a)
(process_code_chunk subroutine 6c)
while (<>) {
print $_;
if (/$begin_code_pat/o) {
process_code_chunk;
}
}

Uses $begin_code_pat 5a and process_code_chunk fic.

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

Last update: 2022/08/13

21:57 logiciel:programmation:noweb:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:start

Processing the code chunk To process the code chunk we need
to perform a few housekeeping tasks. First, we only want to consider
lines that begin with $code_line pat and second, we want to stop
when we find a line that matches $end_code pat. The following loop
will suffice for this purpose.

6 (process_code_chunk subroutine 6c)= (6b)
sub process_code_chunk {
while (($_ = <>) && !/$end_code_pat/o) {
print $_;
if(/$code_line_pat/o) {
(Find and print any definitions 7)
}
}
print $_; # make sure we print the ‘‘@end code’’ line
L
Defines:

process_code_chunk, used in chunk 6b.
Uses $code_line_pat 5b and $end_code_pat Ha.

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 01:26

2026/02/03 01:26 11/16 Noweb : documentation automatique de programme (traduction du man)

When checking for definitions we first strip off any comments since
sub or package may also occur in a comment. We then build a list
@def _list which contain all of the sub and package definitions on
the line and print out an @index defn line for each.
7 (Find and print any definitions 7)= (6¢)
$_ =" s/#.x//o;
@def_list = (/sub\s(\w+)/go, /package\s(\w+)/go);
foreach $item (@def_list) {
print "$index_prefix $item\n";

}

Uses $index_prefix 6a.

Defined Chunks

(autodefs.perl 6b)

(Find and print any definitions 7)
(Global variables 5a)
(process_code_chunk subroutine 6c)

Index

$begin code pat: 5a, 6b
$code line pat: b5b, 6Ge
$end_code_pat: Ha, 6c
$index_prefix: Ga, 7
process _code chunk: 6b, 6c

Cet exemple montre I'imbrication des morceaux de code réel avec le texte descriptif.

Chaque morceau de code est identifié de facon unique par le numéro de page et une sous-référence
alphabétique.

Par exemple, dans la figure 1, il y a quatre gros morceaux codés sur la premiere page, étiquetés dans
la marge 1a, 1b, 1c et 1d.

En plus de I'étiquette marginale, la premiere ligne de chague gros morceau codé a aussi un nom et
une référence de morceau entourée de crochets en marge gauche avec éventuellement des renvois
en marge droite

Voyons de plus prés le morceau 1b qui se présente a peu preés comme ceci :

1b (Globalvariablesla)+= Id<lalbr

Cette ligne nous dit que nous sommes maintenant dans le morceau 1b.

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

Last update: 2022/08/13

21:57 logiciel:programmation:noweb:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:start

La construction 'h Global variables lai+=' nous dit que nous travaillons sur le morceau appelé 'Global
variables’ dont la définition commence dans le morceau 1a.

Le '+="indique que nous ajoutons a la définition de 'Global variables’.

En marge droite, nous rencontrons '(1d) j1a 1c ¢’, qui signifie que le morceau que nous définissons
est utilisé dans le gros 1d et que le morceau actuel continue le morceau la et sera continué dans le
morceau 1c.

A noter que toutes ces indications de cross-reference sont fournies automatiquement par noweb.

A la fin de n'importe quel morceau il y a deux notes en bas de page optionnelles - une note de bas de
page 'Defines’ et une note en bas de page 'Uses’

L'utilisateur peut spécifier manuellement dans le dossier source nw, une liste d'identificateurs (c'est-
a-dire de variables ou sous-routines) qui sont définis dans le morceau courant.

De tels identificateurs peuvent étre automatiquement reconnus si un filtre 'autodefs' pour le langage
de programmation est utilisé (il y a des filtres d'autodefs disponibles pour beaucoup de langages,
incluant C, Icon, TEX, yacc et Pascal). Ces identificateurs sont énumérés dans la note en bas de page
'Defines’ au-dessous du morceau ou leur définition apparait avec une référence aux morceaux qui les
utilisent.

N'importe quelle occurrence d'un identificateur défini manuellement est référée dans une note en bas
de page 'Uses’ au-dessous du morceau qui utilise cet identificateur.

Par exemple, dans la figure 1, nous voyons que le morceau 1c définit le terme $index préfix qui est
utilisé dans le morceau 2b.

Un rapide coup d'oeil au gros morceau 2b vérifie cela. le terme est utilisé et apparait dans la note en
bas de page 'Uses’ pour ce morceau.

Le morceau 1d, appelé ‘autodefs.perl’, représente la description de niveau supérieure de notre
programme entier.

Ce morceau est considéré comme un morceau 'root’ dans noweb et n'est pas utilisé dans autre gros
morceau.

Notre exemple a un seul morceau 'root’, bien que vous puissiez en définir autant que vous voulez
dans votre dossier source nw et notangle peut extraire chacun d'eux dans les dossiers séparés.

La premiere ligne de code dans le morceau 1d est I'obligatoire! ligne
#!/usr/bin/perl

qui doit commencer tous les scripts perl qui doivent étre lancés.

Les deux lignes suivantes ne sont pas des lignes de code de perl mais plutét des appels a d'autres
définitions de morceau. De telles références indiquent que le code des morceaux sera inséré a cet
endroit de dans I'exécutable extrait par notangle.

Ainsi nous avons un large apercu de notre programme sans les encombrantes initialisations de
variables globales et de définitions de sous-routines.

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 01:26

2026/02/03 01:26 13/16 Noweb : documentation automatique de programme (traduction du man)

En regardant le morceau 2a, qui est inclus dans notre morceau racine, nous voyons que cela inclut
aussi un autre morceau, le gros morceau 2b.

Cela montre que I'inclusion de morceaux peut étre imbriquée (a pratiquement n'importe quel niveau)
et peut apparaitre dans n'importe quel ordre dans la documentation (les définitions doivent précéder
les utilisations).

Notre documentation finit avec deux indices optionnels fournis par noweb : l'index des morceaux
codés et un index d'identificateurs.

L'écriture du Programme dans noweb

Connaissant ce qui sort du pipeline dans la main, nous pouvons aborder la structure du fichier source
nw lui-méme.

le programme de I'exemple est listé dans la Liste 1.

Quand vous écrivez votre programme noweb, vous alternez entre expliquer certains morceaux de
code et la définition formelle de ce code.

Vous devez indiquer si vous entrez dans la documentation ou le code par |'utilisation de deux
étiquettes noweb

Pour commencer a écrire la documentation, on commence avec un symbole @ dans la colonne
gauche suivie par un espace ou par un retour chariot. Cela indique que tout le texte qui suit, au moins
jusqu'a I'étiquette suivante, est du texte de documentation.

Tout le texte de documentation est passé a LATEX par le processus de filtration. L'auteur doit donc
fournir les codes de format, comme les sections, les tables, les notes en bas de page et formules
mathématiques souhaités dans la documentation.

En plus des commandes LATEX standards, noweb fournit trois contréles supplémentaires : Un texte
entre crochets doubles est formaté comme du code littéral ; et le es commandes de nowebindex et de
nowebchunks se développent dans les deux types d'indices montrés a la fin de notre exemple dans la
figure 1.

Pour indiquer le début d'un morceau de code, entourez un nom avec « et »=:
<<code_chunk name>>=

Ce qui suit cette construction est le code littéral, ou une référence a un autre bloc.

Vous renvoyez a un autre nom de morceau en placant son nom entre crochets doubles sans signe
égal.

Comme pour la documentation, un morceau de code se termine quand on rencontre une autre
étiquette.

Pour continuer une définition de morceau de code, commencez simplement un nouveau morceau de
code en utilisant le méme nom dans les parentheses que le gros morceau continué.

Le formatage spécial et le cross-referencing de morceaux de code sont gérés automatiqguement par

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

Last update: 2022/08/13

21:57 logiciel:programmation:noweb:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:start

noweb sans aucune contribution de I'utilisateur - a I'exception des identificateurs spécifiés
manuellement par ['utilisateur.

Pour indiquer manuellement une liste d'identificateurs qui sont définis dans un morceau donné,
terminez ce morceau par une ligne de la forme :

@ %def identl ident2

The identifiers given on the line will be placed in a 'Defines’ footnote for that chunk and will
automatically be cross-referenced and indexed by noweb as described in the previous section.

The process by which notangle extracts the code into a form suitable for the compiler or interpreter
follows just a few simple rules. A root chunk is specified on the command line as the chunk to be
extracted and assembled. This chunk is then output line by line until a reference to another chunk is
encountered. At this point, the referenced chunk is output line by line—and similarly for any chunks
referenced therein. When the referenced chunk has been output the process of outputting the root
chunk continues.

When dealing with continued chunks—two or more chunks sharing the same name...notangle
concatenates their definintions in order of appearance into a single named chunk. The extracted code
for our example program is in Listing 2, and it can be seen that all spacing and indentation is
preserved appropriately in the executable version.

It is this extraction and assembly process of notangle that allows the ex- planation of the program and
the presentation of each part of the program to proceed in an order independent of how the program
must be ordered for the compiler or interpreter.

The Incantations.

Now that we know to create a program in noweb we can examine the methods of generating our
typeset and executable versions of the program. The noweb dis- tribution provides a general shell
script called, remarkably, noweb which drives the notangle and noweave processes. However, this
method of invocation, though simple, is somewhat limited. We will focus here on using each tool
separately as this provides a more flexible approach. When you invoke notangle you specify a chunk
name (a root chunk) to extract and assemble from the nw source file. If you fail to specify a chunk,
notangle will search for a chunk named "*' to extract (this is the default root chunk in a noweb
program). The notangle tool writes to stdout so you must redirect this to a file of your choice. The
general form of the command is: notangle [-Rroot_chunk] [-Lformat] [-filter cmd] source.nw >
programfile Thus, to extract the executable version of our example program we used: notangle -
Rautodefs.perl autodefs.perl.nw > autodefs.perl The -R option specifies which root chunk to extract.
The -L option is used to embed line directives, if they are supported by the compiler/interpreter you
will be using. The line directives refer to locations in the nw source file, thus, when debugging your
code you need not ever refer to the executable version, rather you can simply edit the code in the nw
source file. The default format of the line directives is for use with the C preprocessor, but also work
well with Perl with one catch. The line directives are emitted whenever a chunk is entered or returned
to, and refer to the next line of code. Therefore, in a script such as ours, a line directive winds up as
the first line of the executable version, rendering it non-executable. The fix for this is to delete the
first line directive, or move it to below the first line and increment the line number by one. One can
write filters for use with either notangle or noweave to manipulate the source once in the pipeline.
The pipeline representation of the nw source file in noweb is beyond the scope of this article (see the

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 01:26

2026/02/03 01:26 15/16 Noweb : documentation automatique de programme (traduction du man)

"Noweb Hacker’s Guide” included in the documentation of the distribution). We will only mention that
a filter could easily be constructed which automates the solution to the above mentioned line
directive problem. The typeset version of the program is generated with the noweave tool. There are
several useful options for noweave, all detailed in the man-pages. Here we will only consider a few of
the most important options. The first options of general interest concern the desired output: you may
specify -latex (default), -tex or -html as the formatting language to be used for the final
documentation. Each of these options will supply an appropriate wrapper (which can be suppressed
with the -n option) for the typeset version. You may write your nw source file intended for L A
TEXtypesetting and still have the option of producing an html document by invoking noweave with
the -html option and the latex-to-html filter (-filter 12h) included with the distribu- tion. The -x option
enables cross-referencing and indexing of chunk names and any identifiers which are automatically
recognized by an 'autodefs’ filter. Using the -index option implies -x and also provides cross-
referencing and indexing for manually defined identifiers—those mentioned in @ %def statements in
the nw source file. Normally, noweave will insert additional information such as the filename for use in
page headers with its wrapper. The -delay option causes noweave to sus- pend the insertion of this
information until after the first documentation chunk. This is most useful when you wish to provide
your own (La)TeX wrapper to specify additional packages or defining your own special formatting
commands. This implies a -n (omission of wrapper) option and requires that you make sure to include
a " enddocument’ control sequence in a documentation chunk at the end of the file to complete the
wrapper. Our example nw source file is written in this fashion. Our typeset version (Figure 1) was
produced by first extracting the au- todefs.perl root chunk with notangle and making it executable
with the chmod system command. We then placed this executable in the noweb library directory and
invoked noweave as: noweave -autodefs perl -delay -index autodefs.perl.nw > autodefs.tex

This was followed by running L A TEXon the resulting file—twice to resolve page references—to create
the dvi file, and then using dvips to create the postscript version for inclusion with this article.
Additional options allow you to have the index created from an external file, expand tabs, and to
specify alternative formatting options provided by the included noweb.sty file. The latter includes
options to omit chunk numbering in the left margins, change text size in code chunks, and switch
from using the symbolic cross-referencing of code chunks occurring at the right margin to simple
footnote style cross-referencing similar in style to the 'Defines’ and 'Uses’ footnotes.

Pré-requis
Installation
Configuration
Utilisation

Désinstallation

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

Last update: 2022/08/13

21:57 logiciel:programmation:noweb:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:start

Conclusion

Admittedly, a literate program in general takes a little more time and effort to initially produce.
However, as much of this initial effort is devoted to explaining each part of the program, the author is
likely to have produced a better quality program in the end because he or she has put more thought
into the program’s design at each stage of the game. Additionally, by investing in the extra effort of
creating a well documented program, the time saved later in maintaining and upgrading the program
is considerably lessened. In terms of documentation and explanation, the ability to describe com-
ponents as they come into play in the design of the program—rather than in the order they must
occur for the compiler or interpreter—is a vast improve- ment over traditional commented code. In
addition to the benefits of improved code and easier maintanence, literate programs can also serve
well as excellent teaching tools.

Availability and Notes

noweb was written by Norman Ramsey, and pointers to obtaining the source and binary distributions
of noweb (among other related resources) can be found at his noweb homepage
(http://www.cs.virginia.edu/ nr/noweb). The current source distribution contains both awk and Icon
versions of the library files necessary. The binary version is built from the Icon source which is
recommended as the awk version lacks some of the default behavior of the Icon version. Norman
Ramsey has informed us that he is no longer able to maintain and upgrade the awk version. Norman
Ramsey has also told us of plans for version 2.8 to include a troff back end (in addition to the TeX,
LaTeX and html back ends), conditional tangling, and some pretty printing macros.

Voir aussi

¢ (en) https://www.cs.tufts.edu/~nr/noweb/johnson-lj.pdf

* (en) Noweb Hacker's Guide : https://www.cs.tufts.edu/~nr/noweb/guide.html

¢ (en) Noweb example programs : https://www.cs.tufts.edu/~nr/noweb/examples/index.html
¢ (en) Noweb FAQ : https://www.cs.tufts.edu/~nr/noweb/FAQ.html

e page de man de noweb

Basé sur « https://www.cs.tufts.edu/~nr/noweb/onepage.ps » par Norman Ramsey.

From:
https://nfrappe.fr/doc-0/ - Documentation du Dr Nicolas Frappé

Permanent link:

Last update: 2022/08/13 21:57

https://nfrappe.fr/doc-0/ Printed on 2026/02/03 01:26

http://www.cs.virginia.edu/
https://www.cs.tufts.edu/~nr/noweb/johnson-lj.pdf
https://www.cs.tufts.edu/~nr/noweb/guide.html
https://www.cs.tufts.edu/~nr/noweb/examples/index.html
https://www.cs.tufts.edu/~nr/noweb/FAQ.html
https://www.cs.tufts.edu/~nr/noweb/onepage.ps
https://nfrappe.fr/doc-0/
https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:start

	Noweb : documentation automatique de programme (traduction du man)
	Man Noweb
	Introduction
	Aperçu du Système noweb
	La documentation mise en forme
	L'écriture du Programme dans noweb
	The Incantations.

	Pré-requis
	Installation
	Configuration
	Utilisation
	Désinstallation
	Conclusion
	Availability and Notes
	Voir aussi

