
2026/01/30 13:49 1/20 Le Guide du Hacker Noweb (The noweb Hacker’s Guide)

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

Logiciel

Le Guide du Hacker Noweb (The noweb
Hacker’s Guide)

Norman Ramsey

Department of Computer Science

Princeton University

September 1992

(Revised August 1994, December 1997)

Introduction

Ramsey (1994) décrit noweb du point de vue d'un utilisateur, montrant sa simplicité et des exemples
d'utilisation.

Les outils de noweb sont implémentés en tant que tubes.

Chaque tube commence par le fichier source noweb.

Les étapes successives du tube mettent en œuvre des transformations simples de la source, jusqu'à
ce que le résultat souhaité émerge de la fin du tube.

Les figures 1 et 2 montrent les tubes pour notangle et noweave.

Les tubes permettent d'étendre Noweb, ce qui permet de créer de nouvelles fonctionnalités de
programmation sans avoir à écrire leurs propres outils.

Ce document explique comment modifier ou étendre noweb en insérant ou en supprimant des étapes
de tube.

Les lecteurs doivent se familiariser avec les pages man de noweb, qui décrivent la structure des
fichiers sources de noweb.

Le balisage, qui est la première étape de chaque tube, convertit la source de noweb en une
représentation facilement manipulable par des outils Unix communs comme sed et awk, simplifiant la
construction des étapes ultérieures du tube.

Les étapes intermédiaires ajoutent des informations à la représentation.

La dernière étape de notangle convertit en code ; Les dernières étapes de noweave convertissent en
TeX, LaTeX ou HTML.

Les étapes intermédiaires sont appelées filtres, par analogie avec les filtres Unix.

https://nfrappe.fr/doc-0/doku.php?id=tag:logiciel&do=showtag&tag=Logiciel

Last update:
2022/08/13
22:15

logiciel:programmation:noweb:hacker:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:hacker:start

https://nfrappe.fr/doc-0/ Printed on 2026/01/30 13:49

Les étapes finales sont appelées back ends, par analogie avec les compilateurs - elles ne
transforment pas la représentation intermédiaire de noweb ; elles émettent autre chose.

La représentation en tube

Dans le tube, chaque ligne commence par un signe arobase et l'un des mots-clés du tableau 1.

Les mots-clés structurels représentent directement la syntaxe source Noweb. Ils doivent apparaître
dans un ordre qui reflète la structure de la source.

Les mots-clés de marquage peuvent être insérés n'importe où (dans des limites raisonnables) et, à
quelques exceptions près, ils ne sont pas générés par le balisage.

Les mots-clés wrapper marquent le début et la fin du fichier, et contiennent des informations sur le
formatage à faire en début et en fin de bloc. Ils sont utilisés par noweave mais pas par notangle et ils
sont insérés directement par le script shell noweave, et non par le balisage.

Mots-clés structurels

Les mots-clés structurels représentent les morceaux de la source Noweb.

Chaque morceau est entouré d'une paire @begin . . . @end et le type de morceau est soit docs soit
code. Les @begin et @end sont numérotés ; dans un fichier unique, les numéros doivent être
croissants mais n'ont pas besoin d'être consécutifs. Les filtres peuvent changer les numéros de bloc à
volonté.

Selon son genre, un morceau peut contenir de la documentation ou du code.

La documentation peut contenir du texte et des retours à la ligne, représentés par @text et @nl.

Elle peut aussi contenir du code cité, encadré par @quote . . . @endquote. Chaque @quote doit être
terminée par @endquote dans le même bloc. Le code cité correspond à la construction [[. . .]] du
source de noweb.

Mots-clés structurels
@begin kind n Début d'un morceau
@end kind n Fin d'un morceau
@text string chaîne string dans un morceau
@nl Une nouvelle ligne dans un morceau

@defn name Définition du bloc de code nommé
name

@use name Une référence au bloc de code
nommé name

@quote Début du code cité dans un bloc de
documentation

2026/01/30 13:49 3/20 Le Guide du Hacker Noweb (The noweb Hacker’s Guide)

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

Mots-clés structurels

@endquote Fin du code cité dans un bloc de
documentation

Mots-clés de
marquage

@file filename Nom du fichier d'où proviennent les
morceaux

@line n
La ligne de texte suivante provient
de la ligne source n du fichier en
cours

@language language Langage de programmation dans
lequel est écrit le code

@index … Informations d'index.
@xref … Informations de référence croisée
Mots-clés wrapper
@header formatter
options

Première ligne, identifiant le
formateur et les options

@trailer formatter Dernière ligne, identifiant le
formateur.

Mot clé d'erreur
@fatal stagename
message Une erreur fatale s'est produite.

Lying, cheating,
stealing keyword
@literal text Copier le texte sur la sortie.

Tableau 1: Mots clés utilisés dans la représentation tube de
Noweb

Le code, qu'il apparaisse dans le code comme code cité ou dans un bloc de code, peut contenir du
texte et des retours à la ligne, ainsi que des définitions et des utilisations de fragments de code,
marqués avec @defn et @use.

Le premier mot-clé structurel d'un bloc de code doit être @defn.

@defn peut être précédé ou suivi par des mots clé étiquettes, mais le mot clé structurel suivant doit
être @nl ; ensemble, @defn et @nl représentent la ligne <<chunk name>>= qui commence le
morceau (y compris le retour chariot final).

Il découle de ce qui vient d'être dit que :

Le code cité peut ne pas apparaître dans le code, ni dans @defn ni @use. Il est recommandé
que noweave traite spécialement les back ends [[. . .]] quand il apparaît dans defn ou use,
pour que le texte qu'il contient soit traité comme s'il s'agissait d'un code cité.
Le texte dans les morceaux peut être distribué en autant de mots-clés @text que désiré. Un
nombre quelconque de mots-clés @text vides sont autorisés. En particulier, il n’est pas réaliste
d’espérer qu’une seule ligne sera représentée dans un seul @text (voir la discussion de
finduses à la page 14).
markup va parfois émettre @use dans @@quote… @endquote, par exemple à partir d’une

Last update:
2022/08/13
22:15

logiciel:programmation:noweb:hacker:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:hacker:start

https://nfrappe.fr/doc-0/ Printed on 2026/01/30 13:49

source comme [[<<chunk name>>]].
deux morceaux ne peuvent pas avoir le même numéro.
comme les filtres suivants peuvent changer les numéros de bloc, aucun filtre ne doit placer des
références aux numéros de bloc dans le tube.

Mots-clés de marquage

Les mots-clés structurels portent tout le code et la documentation qui apparaît dans un fichier source
Noweb.

Les mots-clés de marquage contiennent des informations sur ce code ou cette documentation.

Le mot clé @file porte le nom du fichier source d'où viennent les lignes suivantes.

Le mot clé @line donne le numéro de ligne de la prochaine ligne @text suivante dans le fichier en
cours (comme déterminé par le mot clé @file le plus récent).

La seule garantie de l'endroit où ils apparaissent est que le balisage introduit chaque nouveau fichier
source par un @file qui apparaît entre les morceaux.

La plupart des filtres ignorent @file et @line mais nt les respecte, de sorte que notangle peut
correctement numéroter les ligne si un filtre noweb déplace des lignes.

Langages de programmation

Pour prendre en charge l'indexation automatique ou l'impression de jolis caractères, il est possible
d'indiquer le langage de programmation dans lequel un bloc est écrit. Le mot clé @language peut
apparaître au plus une fois entre chaque paire @begin code et @end code. Voici les valeurs
standard de @language et leurs significations :

awk awk
c C
c++ C++
caml CAML
html HTML
icon Icon
latex source LATEX
lisp Lisp ou Scheme
make un Makefile
m3 Modula-3
ocaml Objective CAML
perl un script perl
python Python
sh un script shell
sml Standard ML

2026/01/30 13:49 5/20 Le Guide du Hacker Noweb (The noweb Hacker’s Guide)

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

tex plain TEX
tcl tcl

Si le mot-clé @language est activé, il peut être utile de créer un registre automatique sur le World-
Wide Web.

Il est impossible de placer une information @language directement dans un fichier source noweb.

Indexation et référence croisée

Les commandes index et cross-reference utilisent des étiquettes, des identifiants et des balises.

Une étiquette est une chaîne unique désignant un élément en programmation lettrée.
Ils servent d'étiquettes ou de « points d'ancrage » pour les étapes finales qui peuvent mettre en
œuvre leur propre référence croisée.
Par exemple, l'étape finale LATEX utilise des labels comme arguments pour \label et \ref ; l'étape
finale HTML utilise des labels pour nommer des ancres et s'y référer.
Les étiquettes ne contiennent jamais d'espace, ce qui simplifie l'analyse.

Les filtres standards font des références croisées au niveau fragment de code : chaque étiquette se
réfère à un fragment de code particulier et toutes les références à ce fragment utilisent la même
étiquette.

Un identifiant fait référence à un identifiant de langage source.
Dans Noweb, le concept d'identifiant est général.
Un identifiant est une chaîne arbitraire qui peut même contenir des espaces.
Les identifiants sont utilisés comme clés dans l'index ; les références à la même chaîne sont
supposées désigner le même identifiant.

Les balises (Tags) sont des chaînes identifiant les composants de référence croisée dans le document
final.
Par exemple, Classic WEB utilise des numéros de section consécutifs pour désigner des segments.
Par défaut, Noweb utilise des références de sous-page, par exemple, 24b pour le deuxième segment
apparaissant à la page 24.
Le backend HTML n'utilise aucune balise ; au lieu de cela, il implémente des références croisées en
utilisant le mécanisme du lien direct.

La dernière étape de la référence croisée consiste à générer des balises et à associer une balise à
chaque étiquette.
Tous les back-ends existants reposent sur un formateur de document pour faire ce travail, mais cette
stratégie pourrait être modifiée.
Le calcul des balises dans un filtre Noweb peut être beaucoup plus facile que dans un formateur.
Par exemple, un filtre qui calcule des numéros de sous-pages en cherchant dans des fichiers .aux
serait assez facile à écrire, et éliminerait beaucoup de code LATEX.

Informations d'index

J'ai divisé les mots-clés d'index en plusieurs groupes. Il semble y avoir pléthore de mots-clés, mais la

Last update:
2022/08/13
22:15

logiciel:programmation:noweb:hacker:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:hacker:start

https://nfrappe.fr/doc-0/ Printed on 2026/01/30 13:49

plupart sont des représentations simples de parties d'un document produit par noweave.

Les lecteurs voudront peut-être avoir un échantillon de la sortie de noweave à portée de main lors de
l'étude de ceci et de la section suivante.

Definitions, uses, et
@ %def

@index defn ident Le bloc actuel contient une
définition d'ident

@index localdefn ident
Le bloc actuel contient une
définition de ident, qui ne doit pas
être visible en dehors de ce fichier

@index use ident Le bloc actuel contient une
utilisation d'ident

@index nl ident
Un retour à la ligne faisant partie
du balisage, sans faire partie du
bloc

Identificateurs
définis dans un bloc

@index begindefs Début de la liste des identifiants
définis dans ce bloc

@index isused label
L'identifiant nommé dans le
@index defitem suivant est utilisé
dans le bloc étiqueté par label

@index defitem ident
ident est défini dans ce fragment et
utilisé dans tous les morceaux
nommés dans le @index
immédiatement précédent.

@index enddefs Fin de la liste des identifiants
définis dans ce bloc

Identifiants utilisés
dans un bloc

@index beginuses Début de la liste des identifiants
utilisés dans ce bloc

@index isdefined label
The identifier named in the
following @index useitem is defined
in the chunk labelled by label

@index useitem ident
ident is used in this chunk, and it is
defined in each of the chunks
named in the immediately
preceding @index isdefined.

@index enduses Fin de la liste des identifiants
utilisés dans ce bloc

L'index des
identifiants
@index beginindex Début de l'index des identifiants

@index entrybegin
label ident

Début de l'entrée pour ident, dont
la première définition se trouve à
label

2026/01/30 13:49 7/20 Le Guide du Hacker Noweb (The noweb Hacker’s Guide)

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

Definitions, uses, et
@ %def

@index entryuse label
Une utilisation de l'identificateur
nommé dans le dernier @index
entrybegin apparu au niveau du
segment étiqueté label.

@index entrydefn label
Une définition de l'identificateur
nommé dans le dernier @index
entrybegin apparu au niveau du
segment étiqueté label.

@index entryend Fin de l'entrée commencée par la
dernière @index entrybegin

@index endindex Fin de l'index des identifiants

Definitions, uses, et @ %def

%@index defn, @index use, et @index nl sont les seuls
mots-clés d'index qui apparaissent dans la sortie du balisage
et qui peuvent donc apparaître dans n'importe quel
programme.

Ils ne peuvent apparaître que dans les limites d'un bloc de
code (@begin code . . . @end code).

@index defn et index use indiquent simplement que le
bloc actuel contient une définition ou l'utilisation de
l'identifiant ident qui suit le mot-clé.

L'emplacement de @index defn n'a pas besoin d'être en
relation avec le texte de la définition, mais @index use est
normalement suivie par un @text qui contient le texte du
code source identifié comme étant utilisé.

Les instances de @index defn proviennent normalement de
l'une de ces deux sources : soit un identificateur de
définitions dépendant du langage, soit une ligne @ %def
manuscrite.
Dans ce dernier cas, la ligne se termine par un retour chariot
qui ne fait partie ni d'un bloc de code ni d'un bloc de
documentation. Pour que les numéros de ligne restent
précis, ce retour chariot ne peut pas être simplement
abandonnée, mais elle ne peut pas non plus être
représentée par @nl dans un bloc de documentation ou de
code.
La solution est le mot-clé @index nl, qui n'a d'autre but que
de garder une trace de ces retours chariot, pour que le back-
end produise des numéros de ligne précis.

@index localdefn indique une définition qui ne doit pas

Last update:
2022/08/13
22:15

logiciel:programmation:noweb:hacker:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:hacker:start

https://nfrappe.fr/doc-0/ Printed on 2026/01/30 13:49

être visible en dehors du fichier courant.
Il peut être produit par un dispositif de reconnaissance
dépendant du langage ou un autre filtre.

Identificateurs définis dans un bloc

Les mots-clés de @index begindefs jusqu'à @index
enddefs sont utilisés pour représenter une structure de
données plus complexe donnant la liste des identifiants
définis dans un bloc de code.

La constellation représente une liste d'identifiants ; un
@index defitem apparaît pour chaque identifiant.

Le groupe indique également dans quels autres morceaux
chaque identifiant est utilisé ; ces morceaux sont listés par
@index isused keywords qui apparaissent juste avant
@index defitem.

Les étiquettes de ces mots-clés apparaissent dans l'ordre
des blocs de code correspondants et il n'y a pas de doublons.

Ces mots clés peuvent apparaître n'importe où dans un bloc
de code, mais il vaut mieux, dans les filtres, conserver ces
mots clés ensemble.

Les filtres standards garantissent que seulement @index
isused et @index defitem apparaît entre @index begindefs
et @index enddefs.

Les filtres standards les placent à la fin du bloc de code, ce
qui simplifie la traduction par le backend LATEX, mais cette
stratégie pourrait changer à l'avenir.

Cela devrait aller de soi, mais les mots-clés dans ces groupes
et tous les groupes similaires (y compris certains groupes
@xref doivent être correctement structurés. C'est-à-dire :

Chaque @index begindefs doit avoir un @index enddefs
correspondant dans le même bloc de code.
@index isused et @index defitem ne peuvent apparaître que
entre @index begindefs et @index enddefs correspondants.
Les fichues choses ne peuvent pas être imbriquées.

Identifiants utilisés dans un bloc

2026/01/30 13:49 9/20 Le Guide du Hacker Noweb (The noweb Hacker’s Guide)

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

Les mots-clés de @index beginuses à @index enduses sont
le dual de @index begindef à @index enddef ; la structure
répertorie les identifiants utilisés dans le bloc de code actuel,
avec des références croisées aux définitions.

Des interprétations et restrictions similaires s'appliquent.
Notez qu'un identificateur peut être défini dans plus d'un
segment, bien que ce soit inhabituel.

L'index des identificateurs

Les mots-clés @index beginindex à @index endindex
représentent l'index complet de tous les identifiants utilisés
dans le document.

Chaque entrée de l'index est encadrée par @index
entrybegin . . . @index entryend.

Une entrée fournit le nom de l'identifiant, plus les étiquettes
de tous les morceaux dans lesquels l'identifiant est défini ou
utilisé.

L'étiquette du premier bloc de définition est donnée au début
de l'entrée de sorte que les back ends n'ont pas besoin de la
rechercher.

Il est recommandé que les filtres gardent ces mots-clés
ensemble.

Les filtres standards les placent presque à la toute fin du
fichier noweb, juste avant le @trailer optionnel.

Informations de référence croisée

La fonction la plus fondamentale des mots-clés de références croisées est d'associer des étiquettes et
des pointeurs (références croisées) avec des éléments du document, ce qui est fait avec les mots-clés
@xref ref et @xref label. Les autres mots-clés @xref expriment des informations de références
croisées de segments qui sont émises directement par un ou plusieurs back-ends.

La référence croisée entre blocs introduit l'idée d'une ancre, qui est une étiquette qui fait référence à
un « point intéressant » que nous identifions au début d'un fragment de code.

L'ancre est l'endroit où nous nous attendons à aller lorsque nous voulons connaître un fragment de
code ; sa valeur exacte et son interprétation dépendent du back-end utilisé. Le backend LATEX
standard utilise le numéro de sous-page du fragment comme point d'ancrage, mais le backend HTML
standard utilise un certain @text du bloc de documentation précédant le bloc de code.

Last update:
2022/08/13
22:15

logiciel:programmation:noweb:hacker:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:hacker:start

https://nfrappe.fr/doc-0/ Printed on 2026/01/30 13:49

Référence croisée de
base

@xref label label Associe l'étiquette à l'élément
étiqueté.

@xref ref label
Référence croisée de l'article
étiqueté à l'article associé à
l'étiquette.

Lier les définitions
précédentes et
suivantes d'un bloc de
code

@xref prevdef label
Le @defn de la définition
précédente de ce bloc est
associé à label.

@xref nextdef label
Le @defn de la définition
suivante de ce bloc est associé
à label.

Continuation des
définitions du bloc
actuel

@xref begindefs Démarre « Cette définition se
continue en. . . »

@xref defitem label
Donne l'étiquette d'un bloc dans
lequel la définition du bloc en
cours est continuée.

@xref enddefs Termine la liste des blocs où la
définition est continuée.

Blocs où ce code est
utilisé

@xref beginuses Démarre « Ce code est utilisé
dans. . . »

@xref useitem label Donne l'étiquette d'un bloc dans
lequel ce bloc est utilisé.

@xref enduses Termine la liste des blocs dans
lesquels ce code est utilisé.

@xref notused name
Indique que ce segment n'est
utilisé nulle part dans ce
document.

La liste des blocs
@xref beginchunks Début de la liste des blocs

@xref chunkbegin label
name

Début de l'entrée pour le nom
du bloc, dont l'ancre se trouve à
label.

@xref chunkuse label Le bloc est utilisé dans le
morceau étiqueté à label.

@xref chunkdefn label Le bloc est défini dans le bloc
étiqueté avec label.

@xref chunkend Fin de l'entrée commencée par
le dernier

2026/01/30 13:49 11/20 Le Guide du Hacker Noweb (The noweb Hacker’s Guide)

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

Référence croisée de
base
@xref endchunks Fin de la liste des blocs
Conversion d'étiquettes
en mots-clés
@xref tag label tag Associe label avec tag.

Référence croisée de base

@xref label et @xref ref sont nommés par analogie avec les
commandes LATEX \label et \ref. L'étiquette @xref est
utilisée pour associer une étiquette à un élément suivant.

Les articles qui peuvent être ainsi étiquetés comprennent

@defn Étiquette le fragment de code qui commence
ainsi

@use Étiquette cet usage particulier.
@index defn Étiquette cette définition d'un identifiant.
@index use Étiquette cette utilisation d'un identifiant.

@text Étiquette généralement une partie d'un bloc de
documentation.

@end docs Étiquette généralement un bloc de
documentation vide.

La plupart des back ends utilisent le bloc comme unité de
référence croisée, donc les labels de @defn sont les plus
souvent utilisés.

Le backend HTML, cependant, fait quelque chose d'un peu
différent. Il utilise des étiquettes qui se réfèrent à la
documentation précédant un bloc car que le navigateur
HTML typique (Mosaic) place l'étiquette (La terminologie
HTML appelle un label « anchor »). en haut de l'écran, et
utiliser l'étiquette de @defn perdrait la documentation
précédant immédiatement un bloc.

Les étiquettes utilisées par ce back-end pointent
généralement vers @text, mais elles peuvent pointer vers
@end docs lorsque aucun texte n'est disponible.

@xref ref est utilisé pour associer une référence à un
élément suivant. Ces articles comprennent

@defn, @use Fait référence à l'étiquette utilisée comme
ancre pour ce bloc.

@index defn,
@index use

Fait référence à l'étiquette utilisée comme
ancre pour le premier bloc dans lequel cet
identifiant est défini.

Last update:
2022/08/13
22:15

logiciel:programmation:noweb:hacker:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:hacker:start

https://nfrappe.fr/doc-0/ Printed on 2026/01/30 13:49

Lier les définitions précédentes et suivantes d'un bloc
de code

@xref prevdef et @xref nextdef peuvent apparaître
n'importe où dans un bloc de code, et ils donnent, le cas
échéant, les étiquettes des définitions précédentes et
suivantes de ce bloc de code.

Les filtres standards les placent actuellement au début du
bloc de code, suivant le @defn initial, de sorte que
l'information peut être utilisée sur la ligne @defn “a la Fraser
et Hanson” (1995).

Continuation des définitions du segment actuel

Les mots clés allant de @xref begindefs à @xref enddefs
apparaissent dans la première définition de chaque fragment
de code. Ils fournissent les informations requises par le
'Cette définition est continuée en. . . 'Message imprimé par
le backend LATEX standard. Ils peuvent apparaître n'importe
où dans un bloc de code, mais les filtres standard les
mettent après tous les @text et @nls, de sorte que les back-
ends peuvent simplement imprimer du texte.

Blocs où ce code est utilisé

Les mots-clés de @xref beginuses à @xref enduses sont le
dual de @xref begindefs à @xref enddefs ; ils montrent où
est utilisé le bloc actuel.

Comme avec @xref begindefs . . . @xref enddefs, ils
n'apparaissent que dans la première définition de n'importe
quel morceau de code, et ils viennent à la fin.

Parfois, comme pour les segments racine, le code n'est
utilisé nulle part, auquel cas @xref notused apparaît au lieu
de @xref beginuses . . . @xref enduses.

Le nom du bloc en cours apparaît comme un argument de
@xref notused car certains back ends peuvent souhaiter
imprimer un message spécial pour les blocs inutilisés - ils
peuvent par exemple être écrits dans des fichiers.

2026/01/30 13:49 13/20 Le Guide du Hacker Noweb (The noweb Hacker’s Guide)

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

La liste des blocs

La liste des blocs, qui est définie par les mots-clés @xref
beginchunks . . . @xref endchunks, est l'analogue de l'index
des identifiants, mais elle liste tous les blocs de code dans le
document et non les identifiants.

Il est mieux que les filtres gardent ces mots-clés ensemble.

Les filtres standards les placent à la fin du fichier noweb,
juste avant l'index des identifiants.

Conversion des étiquettes en tags

Aucun des back-ends ne calcule réellement les balises ; ils
utilisent tous des moteurs de formatage pour faire le travail.

Le back-end LATEX utilise un package de macros élaboré
pour calculer les numéros de sous-pages, et le backend
HTML fait en sorte que des « liens chauds » soient utilisés à
la place des balises textuelles.

Mots-clés Wrapper

Les mots-clés du wrapper, @header et @trailer, sont spéciaux en ce sens qu'ils ne sont pas générés
par le balisage ou par l'un des filtres standard ; à la place, ils sont insérés par le script shell noweave
au tout début et à la fin du fichier.

Les back ends standard TEX, LATEX et HTML les utilisent pour fournir un balisage de préambule et de
postambule, c'est-à-dire un texte standard qui doit généralement entourer un document.

Ils ne sont pas obligatoires (parfois, vous ne voulez pas ce type de message), mais lorsqu'ils
apparaissent, ils doivent être les toutes premières et dernières lignes du fichier, et les noms des
formateurs doivent correspondre.

Mot clé d'erreur

Le mot clé d'erreur @fatal indique qu'une erreur fatale s'est produite.

L'étape de tube à l'origine d'une telle erreur donne son nom et un message, et affiche également un
message d'erreur standard.

Les filtres qui reçoivent @fatal doivent le copier dans leur sortie et se terminer avec le statut d'erreur.

Last update:
2022/08/13
22:15

logiciel:programmation:noweb:hacker:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:hacker:start

https://nfrappe.fr/doc-0/ Printed on 2026/01/30 13:49

Le back-end recevant @fatal doit se terminer avec le statut d'erreur. (Ils ne devraient rien écrire sur
l'erreur standard puisque cela aura été fait.)

L'utilisation de @fatal permet aux scripts shell de détecter que quelque chose a mal tourné même si
le seul statut de sortie auquel ils ont accès est le statut de sortie de la dernière étape d'un tube.

Mot-clé pour mentir, tricher, voler

Le mot-clé @literal est utilisé pour pirater la sortie directement dans les back-end, comme totex et
tohtml. Ces back ends se contentent de copier le texte dans leur sortie.

Tangle appliqué au back-end ignore @literal.

Le mot-clé @literal est utilisé par les Maîtres pirates trop paresseux pour écrire de nouveaux back
ends. Son utilisation est obsolète.

Filtres standards

Tous les filtres standard, sauf indication contraire, lisent le format de mot clé noweb sur l'entrée
standard et l'écrivent sur la sortie standard.

Certains filtres peuvent également utiliser des fichiers auxiliaires.

markup

Strictement parlant, markup est un frontal, pas un filtre, mais j'en discute avec des filtres car il
génère la sortie qui est traitée par tous les filtres.

La sortie de markup représente une séquence de fichiers.

Chaque fichier est représenté par une ligne “@file filename”, suivie d'une séquence de blocs.

markup numérote les blocs consécutivement à partir de 0.

Il reconnaît et annule également la séquence d'échappement pour les doubles crochets, par ex.
convertir %%“@<<”%% to %%“<<”%%.

Les seuls mots-clés d'étiquetage trouvés dans sa sortie sont @index defn ou @index nl ; malgré ce
qui est écrit à ce sujet, @index use n'apparaît jamais.

autodefs.*

J'ai écrit une demi-douzaine de filtres dépendants du langage qui utilisent des heuristiques simples («
analyse fuzzy » si vous préférez) pour essayer d'identifier des définitions intéressantes d'identifiants.

2026/01/30 13:49 15/20 Le Guide du Hacker Noweb (The noweb Hacker’s Guide)

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

finduses

En utilisant le code fourni par Preston Briggs, ce filtre fait deux passes sur son entrée.

La première passe lit toutes les lignes @index defn et @index localdefn et construit un module de
reconnaissance Aho-Corasick pour les identificateurs qui y sont nommés.

La seconde passe copie l'entrée, en recherchant ces identifiants dans chaque ligne @text qui est du
code.

Lorsqu'il trouve un identifiant, finduses coupe la ligne @text, insérant @index use immédiatement
avant la partie @text qui contient l'identifiant que l'on vient de trouver.

Le comportement décrit dupliquerait les éléments @text chaque fois qu'un identificateur serait un
préfixe d'un autre.

L'option de ligne de commande -noquote empêche les finduses de rechercher des uses dans du code
entre guillemets.

Si finduses reçoit des arguments, il prend ces arguments pour des noms de fichiers, et il lit des listes
d'identifiants (un par ligne) à partir des fichiers ainsi nommés, plutôt que sur son entrée.

Cette technique permet à finduses de ne faire qu'un seul passage sur son entrée ; noweave utilise
cela pour implémenter l'option -indexfrom.

finduses ne doit pas être exécuté avant les filtres qui, comme les filtres autodefs, s'attendent à ce
qu'une ligne soit représentée dans un seul @text.

Les filtres (ou back ends) qui doivent être lancés plus tard, comme les prettyprinters, doivent être
préparés pour traiter les lignes fragmentées et en intercalant des tags @index et @xref.

noidx

noidx calcule toutes les informations d'index et de références croisées représentées par les mots-clés
@index et @xref

L'option de ligne de commande -delay retarde le contenu d'en-tête jusqu'à la fin du premier bloc et
amène le contenu final avant le dernier tronçon.

En particulier, il provoque l'émission de la liste des morceaux et de l'index des identifiants avant le
dernier bloc.

L'option -docanchor n définit l'ancre d'un fragment de code comme suit :

Si un bloc de documentation précède le bloc de code et comporte n lignes ou plus, n lignes à la fin de
ce bloc de documentation.
Si un bloc de documentation précède le bloc de code et comporte moins de n lignes, au début de ce
bloc de documentation.
Si aucun bloc de documentation ne précède le bloc de code, au début du bloc de code, comme si -
docanchor n'avait pas été utilisé.

Last update:
2022/08/13
22:15

logiciel:programmation:noweb:hacker:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:hacker:start

https://nfrappe.fr/doc-0/ Printed on 2026/01/30 13:49

Back-ends standards

nt

Le back-end nt implémente notangle. Il extrait le programme défini par un bloc de code unique (en
développant toutes les utilisations pour former leurs définitions) et écrit ce programme sur la sortie
standard. Ses options en ligne de commande sont :

-t Désactiver l'expansion des tabulations
-tn Développer les tabulations sur n colonnes.
-R name Développer le bloc de code nommé name.

-L format Utiliser format comme chaîne de format pour les
numéros de ligne.

Voir la page man de notangle pour plus de détails sur le fonctionnement de nt.

mnt

mnt (Multiple NoTangle) est un back-end qui peut extraire plusieurs fragments de code d'un même
document en un seul passage.

Il rend le shell Noweb plus efficace.

En plus des options -t et -L reconnues par nt, il reconnaît -all comme une instruction pour extraire et
écrire dans les fichiers tous les fragments de code conformes aux règles définies dans la page de
manuel noweb.

Il accepte également les arguments, ainsi que les options ; chaque argument est considéré comme le
nom d'un fragment de code qui devrait être émis dans le fichier du même nom.

Contrairement à nt, mnt a la fonction de cpif intégrée.

Il écrit dans un fichier temporaire, puis n'écrase un fichier existant que si le fichier temporaire est
différent.

tohtml

Ce back-end émet du code HTML.

Il utilise le formateur html avec @header et @trailer pour émettre un langage HTML approprié.

Pour les autres formateurs (comme none), il n'émet aucun en-tête ni trailer. Ses options de ligne de
commande sont :

2026/01/30 13:49 17/20 Le Guide du Hacker Noweb (The noweb Hacker’s Guide)

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

Figure 1: Étapes de tube pour notangle

-delay Accepted, for compatibility with other back ends,
but ignored.

-localindex Produces local identifier cross-reference after
each code chunk.

-raw
Wraps text generated for code chunks in a
LATEX rawhtml environment, making the whole
document suitable for processing with
latex2html

markup: Convert to tube representation
nt: Extract desired chunk to standard output

Étapes de tube pour noweave -index -autodefs c

markup: Convert to tube representation
 autodefs.c: Find definitions in C code
 finduses -noquote: Find uses of
defined identifiers
 noidx: Add index and cross-
reference information
 totex: Convert to LATEX

totex

Totex implémente les back-ends plain TEX et LATEX, avec @header tex et @header latex pour les
distinguer.

Lorsque vous utilisez un en-tête LATEX, totex place le texte optionnel après l’en-tête à l’intérieur
d’une commande \noweboptions.

Sur la ligne de commande, l'option -delay fait que totex retarde filename markup jusqu’après le
premier bloc de documentation ; ce comportement transforme le premier bloc de documentation en
un bloc « limbo », qui peut utilement contenir des commandes comme \documentclass.

L’option -noindex supprime la sortie relative à l’index des identificateurs ; Elle est utilisée pour
implémenter noweave -x.

unmarkup

unmarkup tente d’être l’inverse de balisage : un document déjà dans le tube est reconverti en forme
source noweb.

Ce back-end est utile pour essayer de convertir les autres programmes lettrés en forme source
noweb.

Last update:
2022/08/13
22:15

logiciel:programmation:noweb:hacker:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:hacker:start

https://nfrappe.fr/doc-0/ Printed on 2026/01/30 13:49

Il peut également être utilisé pour capturer et éditer la sortie d’un module de reconnaissance
automatique de définition.

Commandes standards

Les commandes standard sont toutes écrites en scripts de shell de Bourne (Kernighan et Pike, 1984).

Elles assemblent des tubes d’Unix à l’aide du balisage et des filtres et dos fins décrits ci-dessus.

Elles sont documentées dans les pages de manuel. Je montre deux exemples de tubes dans les
Figures 1 et 2. Le code source est disponible dans le répertoire shell pour ceux qui veulent explorer
plus loin.

Figure 3: awk command used to transform documentation to
comments :

awk ’BEGIN { line = 0; capture = 0
 format =
sprintf("’"$format"’",’"$width"’)
 }

function comment(s) {
 ’"$subst"’
 return sprintf(format,s)
}

function grab(s) {
 if (capture==0) print
 else holding[line] = holding[line] s
}

/^@end doc/ { capture = 0; holding[++line] =
"" ; next }
/^@begin doc/ { capture = 1; next }

/^@text / { grab(substr($0,7)); next}
/^@quote$/ { grab("[[") ; next}
/^@endquote$/ { grab("]]") ; next}

/^@nl$/ { if (capture !=0) {
 holding[++line] = ""
 } else if (defn_pending != 0) {
 print "@nl"
 for (i=0; i<=line && holding[i] ~
/^ *$/; i++) i=i
 for (; i<=line; i++)
 printf "@text %s\n@nl\n",

2026/01/30 13:49 19/20 Le Guide du Hacker Noweb (The noweb Hacker’s Guide)

Documentation du Dr Nicolas Frappé - https://nfrappe.fr/doc-0/

comment(holding[i])
 line = 0; holding[0] = ""
 defn_pending = 0
 } else print
 next
 }

/^@defn / { holding[line] = holding[line]
"<"substr($0,7)">="
 print ; defn_pending = 1 ; next }
{ print }’

$subst, $format et $width sont des variables du shell utilisées pour adapter le script pour différentes
langages.

L’exécution de $subst élimine les marqueurs de fin de commentaire- (le cas échéant) de la
documentation et le sprintf initial qui crée le format variable awk donne le format utilisé pour
imprimer une ligne de la documentation comme un commentaire.

Exemples

Je ne donne pas d'exemple de la représentation de tube ; nous allons juste jouer avec les filtres
existants. En particulier,

$ noweave -v options inputs >/dev/null

imprime (sur le terminal standard d'erreur) le tube utilisé par noweave pour implémenter un
ensemble d’options.

Dans cette section, je donne des exemples de quelques filtres non standard, que j’ai lancés ensemble
pour un but ou une autre.

Cette commande sed d'une ligne fait que noweb traite deux noms de fragments comme identiques
s'ils ne diffèrent que par leur représentation des espaces :

$ sed -e ’/^@use /s/[\t][\t]*/ /g’ -e ’/^@defn /s/[\t][\t]*/ /g’

Ce petit filtre, un script shell Bourne écrit en awk (Aho, Kernighan et Weinberger 1988), crée la
définition d'un bloc vide (<<>>=) qui est une suite de la définition de bloc précédente.

$ awk ’BEGIN { lastdefn = "@defn " }
/^@defn $/ { print lastdefn; next }
/^@defn / { lastdefn = $0 }
{ print }’ "$@"

Pour partager des programmes avec des collègues qui ne font pas de programmation lettrée, j'utilise
un filtre, illustré à la figure 3, qui place chaque ligne de documentation dans un commentaire et le
déplace vers le bloc de code suivant. Avec ce filtre, notangle transforme un programme lettré en un

Last update:
2022/08/13
22:15

logiciel:programmation:noweb:hacker:start https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:hacker:start

https://nfrappe.fr/doc-0/ Printed on 2026/01/30 13:49

programme commenté traditionnel, sans perte d'information et avec une légère pénalité en termes
de lisibilité.

Voir aussi

(en) http://
(fr) http://

Basé sur « Article » par Auteur.

From:
https://nfrappe.fr/doc-0/ - Documentation du Dr Nicolas Frappé

Permanent link:
https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:hacker:start

Last update: 2022/08/13 22:15

https://nfrappe.fr/doc-0/
https://nfrappe.fr/doc-0/doku.php?id=logiciel:programmation:noweb:hacker:start

	Le Guide du Hacker Noweb (The noweb Hacker’s Guide)
	Introduction
	La représentation en tube
	Mots-clés structurels
	Mots-clés de marquage
	Langages de programmation
	Indexation et référence croisée
	Informations d'index
	Informations de référence croisée

	Mots-clés Wrapper
	Mot clé d'erreur
	Mot-clé pour mentir, tricher, voler

	Filtres standards
	markup
	autodefs.*
	finduses
	noidx

	Back-ends standards
	nt
	mnt
	tohtml
	totex
	unmarkup

	Commandes standards
	Exemples
	Voir aussi

